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We consider a quantum many-body system on a lattice which'exhibits a spon- 
taneous symmetry breaking in its infinite-volume ground states, but in which 
the corresponding order operator does not commute with the Hamiltonian. 
Typical examples are the Heisenberg antiferromagnet with a N6el order and the 
Hubbard model with a (superconducting) off-diagonal long-range order. In the 
corresponding finite system, the symmetry breaking is usually "obscured" by 
"quantum fluctuation" and one gets a symmetric ground state with a long-range 
order. In such a situation, Horsch and yon der Linden proved that the finite 
system has a low-lying eigenstate whose excitation energy is not more than of 
order N -  J, where N denotes the number of sites in the lattice. Here we study 
the situation where the broken symmetry is a continuous one. For a particular 
set of states (which are orthogonal to the ground state and with each other), we 
prove bounds for their energy expectation values. The bounds establish that 
there exist ever-increasing numbers of low-lying eigenstates whose excitation 
energies are bounded by a constant times N- t .  A crucial feature of the par- 
ticular tow-lying states we consider is that they can be regarded as finite-volume 
counterparts of the infinite-volume ground states. By forming linear combi- 
nations of these low-lying states and the (finite-volume) ground state and by 
taking infinite-volume limits, we construct infinite-volume ground states with 
explicit symmetry breaking. We conjecture that these infinite-volume ground 
states are ergodic, i.e., physically natural. Our general theorems not only shed 
light on the nature of symmetry breaking in quantum many-body systems, but 
also provide indispensable information for numerical approaches to these 
systems. We also discuss applications of our general results to a variety of inter- 
esting examples. The present paper is intended to be accessible to readers 
without background in mathematical approaches to quantum many-body 
systems. 
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1. I N T R O D U C T I O N  

1.1.  M o t i v a t i o n s  

Symmetry breaking in quantum many-body systems is a challenging 
problem in theoretical physics. In some situations, strong "quantum effects" 
lead to phenomena which are hard to predict or understand from a 
"classical" point of view. The present paper is devoted to one such 
"quantum effect," namely, how a symmetry breaking manifests itself in 
a f in i t e  system when the order operator  and the Hamiltonian do not 
commute with each other. The topic reflects subtlety of both quantum 
mechanics and many-body problems, and indeed has been a source of some 
confusion in the field. 3 We have tried in the present paper not only to 
present out new theorems, but also to review (hopefully in an accessible 
manner)  some background materials necessary to understand the nature of 
the problems. 

Suppose that we have a quantum many-body system which exhibits a 
spontaneous symmetry breaking in its infinite-volume ground states. When 
the operator  that measures the symmetry does not commute  with the 
Hamiltonian, one encounters strong "quantum fluctuation." In the corre- 
spond ing  f in i t e  system, the symmetry breaking is usually "obscured" by the 
fluctuation, and one only gets a unique ground state with perfect symmetry. 

An "obscured symmetry breaking ''4 usually manifests itself in the 
following two different ways. 

~ One observes a long-range order in the ground-state two-point 
correlation function for the order operators. 

~ There appear eigenstates of the Hamiltonian with energies "close" to 
the ground-state energy. We call them "low-lying eigenstates." (See 
Section 2.1 for precisely how "close" the energies should be, and the 
motivation for the criterion.) 

Although one might be tempted to interpret these "low-lying eigenstates" 
as counterparts of excited states in the infinite-volume system, some of 
them are actually "parts" of the infinite-volume ground states. In the 
infinite-volume limit, some of the "low-lying eigenstates" and the unique 

See footnotes in Section 1.2 for what the confusions are. 
4 Even in a classical system or a quantum system with commuting Hamiltonian and order 

operator one never observes explicit symmetry breaking in a finite system at a finite tem- 
perature. In this sense, "obscured symmetry breaking" may be regarded as a common 
phenomenon not necessarily intrinsic to quantum systems. Throughout the present paper, 
however, we use the term "obscured symmetry breaking" to indicate only the (most interest- 
ing and nontrivial) situation where a symmetry breaking in the infinite volume becomes 
unobservable in a ground state of a finite system due to quantum fluctuation. 
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ground state are linearly combined to form a set of ergodic ground states 
with explicit symmetry breaking. These ergodic ground states are believed 
to correspond to physically realizable states in a large system at an 
extremely low temperature. 

When a continuous symmetry is broken, there are infinitely many 
ergodic ground states in the infinite volume. It is then expected that the 
number of independent "low-lying eigenstates" in the corresponding finite 
system increases indefinitely as the system size gets larger. The existence of 
such ever-increasing numbers of "low-lying states" and the corresponding 
finite-size scaling behavior of the low-lying spectrum of the Hamiltonian 
may be regarded as characteristic features of a continuous symmetry break- 
ing in a quantum many-body system. These points have been discussed 
mainly by practitioners of numerical exact diagonalization of quantum spin 
systems. (It is not easy to list all the relevant references. See, for example, 
refs. 18, 24, 8, 7, 29, and 35 and the references therein.) But rigorous 
information is lacking except in the mean-field model, m' 17. 19) See also 
ref. 6 for an early related discussion within the framework of the spin-wave 
approximation. 

The purpose of the present paper is to state general theorems for 
lattice quantum many-body systems which exhibit "obscured symmetry 
breaking." Our results can be roughly divided into two parts, which are 
closely related with each other. 

The first set of results clarifies the relation between the above- 
mentioned two types of manifestations of an "obscured symmetry breaking." 
Whenever there is a finite-volume ground state which does not break sym- 
metry but whose correlation function exhibits a certain long-range order, 
we expect that there inevitably appear "low-lying eigenstates." Horsch and 
yon der Linden ~15~ actually proved that the existence of a long-range order 
implies the existence of a "low-lying eigenstate" whose excitation energy is 
less than of order N -  E, where N is the number of sites in the lattice. (See 
Theorem 2.2.) Our new results deal with the cases where the long-range 
order is related to a continuous U(1) symmetry. We construct a particular 
set of states which are orthogonal to the ground state and with each other, 
and prove that they are indeed "low-lying states" in the sense of Defini- 
tion 2.1. When the system has a higher U(1)x Z2 symmetry, we can show 
that there are ever-increasing numbers of "low-lying eigenstates" whose 
excitation energies are bounded from above by a constant times N-1. Such 
finite-size scaling'behavior of the low-lying spectrum of the Hamiltonian is 
characteristic in a system where an "obscured symmetry breaking" related 
to a continuous symmetry takes place. As far as we know, this is the first 
rigorous (and explicit) demonstration that ever-increasing numbers of 
"low-lying states" indeed exist. 
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A very important problem which we do n o t  solve in the present paper 
is whether such finite-size scaling behavior alone is sufficient to conclude 
that there is a symmetry breaking in the infinite volume. See refs. 8, 7, and 
35 for discussions about this problem. See ref. 26 for a solution of the 
closely related problem of showing the existence of a symmetry breaking 
when there is a long-range order in a series of finite systems. 

The second set of results of the present paper clarifies the roles played by 
the "low-lying states" in forming infinite-volume ground states with explicit 
symmetry breaking. In general we show that any translation-invariant 
"low-lying states" converge to a ground state in the infinite-volume limit. 
The particular "low-lying states" we construct have the crucial feature that 
they can be naturally regarded as "parts" of infinite-volume ground states 
with explicit symmetry breaking. To demonstrate this fact, we construct 
[for a general class of models with a U(1) symmetry] infinite-volume 
ground states with explicit symmetry breaking by taking suitable linear 
combinations of the low-lying states and the (finite-volume) ground state 
and then taking infinite-volume limits. We conjecture that these ground 
states are ergodic, i.e., are physically natural (infinite-volume) ground 
states. 

We also discuss applications of our general results to a variety of 
concrete examples. The examples include the Heisenberg antiferromagnet, 
the Bose-Einstein condensation in the hard-core Bose gas on a lattice, the 
superconductivity in lattice electron models, and the Haldane gap problem 
in the S =  1 quantum antiferromagnetic chain. An interesting observation 
in the application to the Bose gas is that, by following our general discus- 
sions, we are naturally led to consider ground states which do not conserve 
the particle number. 

We believe that these results not only clarify the nature of symmetry- 
breaking phenomena in quantum systems, but also provide indispensable 
information for numerical approaches to various quantum many-body 
systems. 

The present paper is organized as follows. In the following Section 1.2, 
we illustrate some of the basic notions by studying a concrete example of 
the Ising model under a transverse magnetic field. We have tried to make 
this section accessible to readers who are not familiar with mathematical 
approaches to quantum many-body problems. In Section 2, we state our 
theorems in the most general setting and discuss their physical conse- 
quences. In Section 3, we discuss applications of our theorems to typical 
problems. Sections 4 and 5 are devoted to the proofs of our theorems. 

In three appendices, we prove and summarize some useful results closely 
related to the main body of the paper. In Appendix A, we discuss relations 
between three different definitions of  infinite-volume ground states and show 
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that they are all equivalent when restricted to translation-invariant states. 
In Appendix B, we concentrate on a system with spontaneously broken 
discrete symmetry and present a theorem which shows how to construct 
ergodic infinite-volume ground states. In Appendix C, we prove lemmas 
which characterize fluctuations of bulk quantities. 

1.2. "Obscured Symmetry  Breaking" and "Low-Lying States'" 
in a Simple Example 

Before discussing general theorems, we want to make clear what we 
mean by "obscured symmetry breaking" and "low-lying states" and how 
these notions are related to phenomena of symmetry breaking. For this 
purpose, we shall discuss one of the simplest models in which one observes 
an "obscured symmetry breaking" and "low-lying states." In the course of 
the discussion, we briefly review the notions of ground states in an infinite 
system, of ergodic states, and of symmetry breaking in the absence of a 
symmetry-breaking field. Although such materials form standard back- 
ground in mathematical approaches to quantum many-body systems, we 
have noted that they are not widely appreciated in standard physics 
literature. Here we will try to explain basic physical ideas rather than 
developing precise mathematical formalism. Mathematical details will be 
supplied in the following sections. 

Consider the d-dimensional L x ... • L hypercubic lattice A c Z d and 
impose periodic boundary conditions. We define the S = 1/2 spin system on 
A with the Hamiltonian 

HA ~ R(3)S(3)-- B ~ '~(l) 
(x ,  y )  x 

(1.1) 

where the first sum is over nearest-neighbor pairs of sites in A, the 
magnetic field satisfies B i> 0, and Sx = (S~ 1), S(~ ), S~ 3)) denote the S = 1/2 
spin operators at site x. The model is known as the Ising model under 
transverse magnetic field. 

The ground state of the Hamiltonian (1.I) is known to exhibit a phase 
transition as the transverse field B is varied. This is most clearly seen from 
the following behavior of the order parameter m(B). Let r176 B') be the 
normalized ground state of the Hamiltonian HA--B'O~, where OA is the 
order operator 

OA = Z S-(, -3' (1.2) 
X E A  
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The field B' is usually called the symmetry-breaking field. Define the order 
parameter by 

m(B ) := l im  lim I ( ~ I ( B , B ' ) , O A q ~ ~  (1.3) 
B'IO ATZd IV 

where N =  L d is the number of sites in A. Throughout the present paper, 
the symbol := signifies definition. It can be proved that, for a fixed dimen- 
sion d (=1 ,  2, 3,...), the order operator satisfies r e (B)=0  for sufficiently 
large B, and re(B) > 0 for sufficiently small B. In the latter case, the global 
up--down symmetry of the system is spontaneously broken in the infinite- 
volume ground state. [Of course we mean the positive (respectively negative) 
direction in the third axis by up (respectively down).] 

Let us see how this symmetry breaking manifests itself in finite 
systems. When B = 0, the model is nothing but the classical Ising model. 
The Hamiltonian (1.1) has two ground states q~]- and ~ j ,  in which all the 
spins are pointing up and down, respectively. The ground states are 
ordered and break the up-down symmetry of the Hamiltoninan. 

When B > 0, we encounter "quantum fluctuation." By using the 
Perron-Frobenius theorem, as in Marshall ~ and Lieb and Mattis, c321 
one finds that the ground state qs~(B) of the Hamiltonian (1.1) is unique 
for an arbitrary finite L. Hence the global up--down symmetry remains 
unbroken in the finite-volume ground state qs~(B) for any value of B > 0. 
When re(B)> 0, we might say that the symmetry breaking in the infinite- 
volume limit is "obscured" by "quantum fluctuation" in finite systems. 

A sign of the "obscured symmetry breaking" can be found as a long- 
range order in the two-point correlation functions. Although we have 
(qs~~ SIS~~ = 0 x  A for any B > 0 ,  we expect (and can prove for 
sufficiently small B) that 

(~O~(B), SxC3~ S,.r qb A~o~ (B))~_ re(B)'- (1.4) 

holds for sufficiently large [x -y l .  
Another sign of the "obscured symmetry breaking" can be found if we 

consider the first excited (eigen)state ~AI)(B) of H A and its energy E]  ~1. 
When we have re(B)> 0, we expect that 

E~ l ) -  E~ ~ , ~ e x p [ - t ( B )  L a ] (1.5) 

holds as LT oo with a positive finite constant t(B), where Eta ~ denotes the 
ground-state energy. The states {~/,~'I(B)} A in this situation are typical 
examples of "low-lying eigenstates. ''5 See Definition 2.1. 

S A beginner to exact diagonalization might identify q ~ ( B )  as a finite-size counterpart of an 
excited state in the infinite system. As will become clear soon, this is totally misleading. 
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Now we discuss states in the infinite system. A ground state in the 
infinite system may be defined by the thermodynamic limit 

cos(A) :=  lim (qs~~ Acb~I(B)) 
A TZ a 

(1.6) 

where A is an arbitrary local operator  (i.e., a polynomial of spin operators) 
and q~~ is the unique ground state of H A. The limit is well-defined if 
one takes suitable subsequence of lattices. (See Section 2.5 and Appendix A 
for details.) Since the finite-volume ground state qs~~ respects the global 
up--down symmetry,  so does the infinite-volume ground state ~os( --- ). In 
particular we have 

fOB( (311 S.,. / = 0  (1.7) 

for any x. 
One might suspect from the above construction and the relation (1.7) 

that when the symmetry-breaking field B' is vanishing, there is no sym- 
metry breaking even in the infinite-volume limit. 6 From a physical point of 
view, however, this conclusion is unnatural  and misleading. One should 
recall that there are many situations in nature where we do observe a sym- 
metry breaking in the absence of explicit symmetry-breaking fields. 7 It is 
indeed possible to develop mathematically sensible definitions of infinite- 
volume ground states which are capable of describing a symmetry breaking 
without symmetry-breaking fields. We discuss precise definitions in 
Section 2.5 (Definition 2.6) and Appendix A. Here we shall see concrete 
examples. 

Before discussing the symmetry breaking, however, let us observe that 
the above ground state ogn( -.- ) indeed has an unnatural  property. Let f2 
be a hypercubic region in Z d and denote by IOI the number  of sites in g2. 
Consider the bulk physical quanti ty MQ := Z.~Ea o) S x . By combining (1.4), 
(1.7), and Lemma C.1, we find that 

1 
i~1= c%{ [Ma  - oos(Ma)] 2 } >/re(B)2 (1.8) 

as I•l T oo. The relation (1.8) implies that in the state cos( .. .  ) the intensive 
bulk quanti ty Ma/[l-2[ has a finite fluctuation provided that re(B)> O. This 

6 This is another possible confusion we sometimes encounter. 
7 A typical example is antiferromagnetism, in which a staggered magnetic field plays the role 

of symmetry-breaking field. No mechanism can generate a real staggered magnetic field in 
an antiferromagnetic material. A more drastic example is the Bose-Einstein condensation, 
where the symmetry-breaking field should create and annihilate particles! 
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is in contrast  to the basic requirement in physics that  any intensive bulk 
quanti ty exhibits essentially no fluctuation in a thermodynamical ly  stable 
phase. An infinite-volume state in which any intensive bulk quanti ty has 
vanishing fluctuation is called an ergodic state. (See Definition 2.7.) It is 
believed that a physically realizable state in a large system can be well 
approximated  by an ergodic state. (See Remark  1 at the end of the present 
section for further discussion.) The behavior  (1.8) implies that  the state 
cos( . . .  ) is not ergodic, and is hence unphysica.1. 

Then there must be some physically natural  ground states. Let us note 
that  the ground state ~ ) ( B )  and the first excited state <0~ ~)(B) inherit the 
existence of symmetry  breaking in the infinite-volume limit. We expect that  
when m(B)> 0 these states can be written as 

and 

~,(2)(B) -~ ~ I-,~- (B) + ~ (B)] (1.9) 

l 1 
�9 ~ )(B) -~ ~ [ ~  ( B ) -  ~A (O)] (1.10) ,/2 

where ~ a  and ~A are the states obtained by taking into account  local 
quan tum fluctuations into the completely ordered states ~ ]  and q ~ ,  
respectively. Equations (1.9) and (1.10) motivate  us to define two states in 
the infinite system by 

co~(A) := lim �89176 _+ q)~)(B)],  A [q~~ _ ~ ) ( B ) ] )  
A T Za 

_~ lim ($~(B),A$~(B))  (1.11) 
A T Z  d 

for an arbi trary local operato;" A. By using (1.5), the translation invariance 
of the expectation values, and the fact that  (q~tAI)(B), HA O ~ ) ( B ) ) = 0 ,  we 
find that these states satisfy 

r (hx) = eo := oos(hx) (1.12) 

{3) (3) - -  for any x e Z  d. The local Hami l ton ian  is h . , . = - ~ , ,  Ix-yl=,  Sx Sy /2 
BS.~'), where the sum runs over the sites y which are neighboring to x. We 
call the above e o the groud-state energy density. Following Definition 2.6, 
we shall interpret the relation (1.12) as indicating that  the states co~( . . .  ) 
are infinite-volume ground s t a t e s / W e  stress that  this is a natural  definition 

8 The existence of ground states other than oJB( ... ) apparently contradicts the "uniqueness of 
the ground state" we mentioned earlier, and has been a source of confusion (especially in 
much more delicate situations, e.g., in Heisenberg antiferromagnets). Of course there is no 
contradiction, since the uniqueness (as is proved by the Perron-Frobenius argument m~) 
applies only to a finite system. 
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of ground states. In a bulk (or an infinite) system, it is no longer meaning- 
ful to talk about small differences in the total energy. What really count are 
the expectation values of the local Hamiltonian, and the present definition 
is designed precisely to look only at them. We shall discuss further the 
definitions of infinite-volume ground states in Appendix A. 

The final expression in (1.11) suggests the existence of an explicit 
symmetry breaking as 

t~• +_m(B) (1.13) B L ~  / 

If we assume the existence of a long-range order as in (1.4) and the 
existence of a gap above E~ j), we can prove the relation (1.13) from (B.7) 
and Lemma B.4. Under the same assumptions, we can also prove that the 
infinite-volume ground states o9~( ...  ) are ergodic. See Theorem B.1. We 
conclude that e ) ~ ( . . . )  constructed by taking linear combinations of 
~~ and ~ ) ( B )  are the physically natural ground states in the infinite 
volume. 

Let us summarize what we have learned from the present simple 
example. When there is an "obscured symmetry breaking," we have the 
following. 

�9 There inevitably exists a "low-lying eigenstate." 

�9 The infinite-volume ground state defined by a naive infinite-volume 
limit of finite-volume ground states is not "ergodic," i.e., is unphysical. 

�9 An ergodic ground state may be formed by taking a linear combina- 
tion of the finite volume ground state and the "low-lying (eigen)- 
state" and then taking the infinite-volume limit. 

In Section 2, we will see that these features are typical when there is 
an "obscured symmetry breaking." We will mainly concentrate on how the 
situation is modified when the relevant symmetry is a continuous one. 

R e m a r k s .  1. The statement that "a physically realizable state in a 
large system can be well approximated by an ergodic state" perhaps 
requires some explanation. Since this is a very delicate problem about 
observations in quantum many-body systems, we can only give some 
heuristic ideas. 

Consider a large but finite system at an extremely low temperature. 
(Note that it is impossible to attain the absolute zero temperature as long 
as observations are done within a finite amount of time.) Suppose that the 
thermal energy is much larger than the excitation energy of the "low-lying 
eigenstate," which is quite likely since the thermal energy is proportional to 
the system size. Then one has a chance to observe not only the ground 
state, but any linear combination of the ground state and the "low-lying 
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state." Most of these linear combinations, however, suffer from the 
pathological behavior that some bulk intensive quantities have finite fluc- 
tuations as in (1.8). Conventional wisdom suggests that a state with such 
a pathologically large fluctuation is unstable under perturbations. Small 
thermal disturbances may well destroy such a state and bring it into a more 
stable one. We expect that such a mechanism will select only ergodic states 
out of the infinitely many linear combinations of the ground state and the 
"low-lying state." 

2. The reader might wonder about the nature of the ground state 
�9 ~~ and the first eigenstate ~ ) ( B )  when B is large enough so that we 
have re(B)=0.  In this case, we expect that HA has a finite gap almost 
uniform in the lattice size N, and thus 

E ~ " -  E~~ = O(1) (1.14) 

as N Too. According to Definition 2.1, the state cp ~ ~(B) may be again called 
a "low-lying eigenstate." However, its nature is totally different from that 
in the case with re(B) > 0. (This may be regarded as a disadvantage of our 
definition of "low-lying states." See the discussion following Definition 2.1.) 

Roughly speaking, the first excited" state ~P~ I(B) can be regarded as the 
state in which a single "magnon" is in the k = 0 state, i.e., 

�9 ~"(B)-~ ~ qs]~'(B) (1.15) 
x ~ A  

where ~i~l(B) is the state in which the magnon is localized at site x. When 
B is extremely large, q~i~(B) may be approximated by the state in which 
the spin at x is pointing in the direction opposite to the magnetic field and 
all the other spins are pointing in the direction of the field. 

The biggest difference from the case with re(B)> 0 is that the limit 

ebB( .-. ) := lim ( [ ~ ~  + flr '(B)I, ( . . . ) [ ~ ~  + f l ~ '  ~(B)I) 
A T Z  a 

(1.16) 

with any ct, fl with 1~12+ I/~12 = 1, defines exactly the same state as cos( ... ) 
in (1.6). More precisely, we have 

o~s(A ) = Cos(A ) (1.17) 

for an arbitrary local operator A. The equality (1.17) should be expected 
since, in an infinite system with only a single magnon, the probability 
of observing the magnon is vanishing. We expect that in this case the 
infinite-volume ground state is unique and preserves the global up-down 
symmetry. Such a result can be proved rigorously for sufficiently large B. 
See Theorem A.4. 
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2. RESULTS AND PHYSICAL CONSEQUENCES 

In the present section, we describe our main results and their physical 
consequences in a general setting. One of the goals is the construction of 
infinite-volume ground states with explicit symmetry breaking presented in 
Section 2.5. A result on "low-lying eigenstates" which has direct relevance 
to numerical approaches can be found in Section 2.6. 

2.1. Preliminaries 

Here we fix some basic notations. We also give a precise definition of 
"low-lying states" and discuss motivations behind the definition. 

We consider a quantum system on a finite lattice A with N sites. With 
each site x ~ A we associate a finite-dimensional Hilbert space ~.,.. The full 
Hilbert space is 

~,, := | ~,~ (2.1) 
x~A 

We note that a "site" in A need not be an atomic site of a quantum many- 
body system. If necessary, one may call a group of atomic sites a "site" and 
let ~,. be the corresponding finite-dimensional Hilbert space. 

Throughout the present paper, the norm of a state ~A e ~ is defined 
as IIV'A 11-- (~,~, ~A) '/2 and the norm of an operator A on 3r as 

IlZll := sup (2.2) 

For a fixed A, we take the Hamiltonian 

HA := ~ hx (2.3) 
x ~ A  

where each h.~ is a self-adjoint operator on YgA- 
In order to discuss the notion of "low-lying states" we take a sequence 

{A } of finite lattices which tend to the infinite lattice Z ~. For each A 
(with N sites) we consider a quantum mechanical system on A with the 
Hamiltonian H A and the ground state ~/,(A ~ The corresponding eigenvalue 
of HA is denoted as E~~ 

D e f i n i t i o n 2 . 1 .  A sequence of normalized states { ~ } A  are called 
"low-lying states" if 

lim 1 [ ( ~ ,  H A ~ ) _  E~O, ] = 0  (2.4) 
aTzaN 



756 Koma and Tasaki 

holds, and if each q~] is o r thogona l  to the g round  state ~o~. "Low-lying 
states" in which each state ~ ]  happens  to be an eigenstate of the 
Hami l ton ian  HA are called "low-lying eigenstates." 

The above definition of "low-lying states" is mainly mot iva ted  by 
Theorem 2.8, which says that  any t rans la t ion- invar iant  " low-lying states" 
converge to an infinite-volume ground  state. We note, however,  that  the 
definition is too general to indicate only those "low-lying states" which play 
crucial roles in forming infinite-volume ground  states with symmetry  
breaking.  F o r  example,  the "magnon  state" (1.15) discussed in the remark  
of Section 1.2 is also a "low-lying state" according to the definition, but  one 
usually wishes to consider  it as an excited state. 9 The reader  may  regard 
that  the definition is in t roduced for no ta t iona l  convenience rather  than to 
indicate a physically impor tan t  notion.I~ 

2.2. Theorem of  Horsch and von der Linden 

Before discussing our  own results, we describe the theorem due to 
Horsch  and v o n d e r  Linden, ~5~ which was the first r igorous  result con- 
cerning the existence of a "low-lying state" in the presence of an "obscured 
symmetry  breaking."  

We consider  a finite lattice A with N sites and a quan tum many-body  
system on it as in Section 2.1. Let 

OA := ~ Ox (2.5) 
s e a  

be the order  opera tor ,  where each ox is a self-adjoint ope ra to r  on ,,vfA. 
Assume that  Ilhx II ~< h and Ilox II ~< o hold for any x with x- independent  

finite constants  h and o. Assume also that  [ox, o,.] = 0 holds for any x, y 
and [h,., o r ]  = 0 holds unless the site y belongs to the suppor t  set 6e.,.. We 
require that  the number  of sites in 5(.,. is bounded  from above  by an integer 
r. Let ~A be an eigenstate of HA with the eigenvalue EA. We assume that  
the state ~A exhibits an "obscured symmetry  breaking" in the sense that  it 
satisfies 

(~A,  O A ~ A ) = 0  (2.6) 

9 It is worth mentioning, however, that the state with exactly one magnon is never observed 
as an excited state in actual experiments. One can measure the effects caused by magnons 
only in the state where magnons have a finite density. Such a state is, of course, not a 
"low-lying state." 

~o If we recall the discussion in Remark 1 of Section 1.2, however, it is possible to give a physi- 
cal meaning to the above definition. Equation (2.4) precisely states the condition that the 
energy gap of the states {q~',l} is dominated by the thermal energy in a sufficiently large 
system. 
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and 

(qSA, (OA) 2 qSA)/> (poN)  2 (2.7) 

with a constant 0 </~ ~< 1. We define 

OAq~A (2.8) 
~uA := I IO,,r II 

which is well-defined since IIOA~A It is nonvanishing because of (2.7). 
Then the theorem of Horsch and v o n d e r  Linden is the following. If 

we set q5 A as the ground state r ~ it shows that there is a sequence 
of states { ~ I } A  which form "low-lying eigenstates" (in the sense of 
Definition 2.1 ), and their excitation energy is less than of order N -  1. 

T h e o r e m  2.2. The expectation value of the energy in the state ~A 
satisfies 

1 1 
I( ~ , ,  HA ~uA ) -- EA I ~ Co ~-5 (2.9) 

with Co = 2r2hl a-2. When qSA is the ground state ~o~ of HA, there exists an 
~- c ~ ~ satisfies eigenstate ast~ of HA whose ene rgy -A  ~A 

1 
E~"- EA ~ Co ; (2.1o) 

Proof. A crucial observation is that the energy difference can be 
expressed in terms a double commutator  such as the following. Then the 
first part follows as 

I(q~A, [[OA, HA], OA] r 
I(V'A, HA gJA ) -- E A I = 2 II OA ':/'A II 2 

IIEEOA, HAl, OA-III ~< 
2 IIOA~A II 2 

4r2ho2N 1 
~ 2(~uoN) 2 c o N  (2.11) 

where we have ~ised the assumed commutation relations and the norm 
bounds of hx and ox as well as (2.7). To prove the second part, we note 
that the relation (2.6) implies that the state ~A is orthogonal to the ground 
state ~ .  Then the statement in the theorem is a simple consequence of 
the variational principle. 1 
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2.3. Main Theorems 

Now we shall describe our own theorems about "low-lying states." 
They apply to a system with a continuous symmetry and establish the 
existence of ever-increasing numbers of "low-lying eigenstates." 

We again consider a finite lattice A with N sites and a quantum 
many-body system on it as in Section 2.1. We further require that the 
system possesses a global U(1) symmetry whose generator is a self-adjoint 
operator CA. We assume that 

[HA, CA] = 0  (2.12) 

We introduce the order operators 

O(A ~) := ~ o!,Y ) (2.13) 
.~," E A 

where ~ = I, 2, and each o!,Y ) is a self-adjoint operator on 9flA. The order 
operators form two components of a.vector (O()), O(A 2)) which transforms 
under the action of U(1) and measure a possible spontaneous breakdown 
of the U(1) symmetry. They satisfy the standard commutation relations 

EO() ), CA] = --iO] 2), [O(A 2,, CA] =iO(A ') (2.14) 

We also introduce 

O ~ := O(Al) "F iO(4 2) (2.15) 

which satisfy the commutation relations 

[0~, CA] = --OA, [O~,  CA] = O~ (2.16) 

The operators O~- and O~ are the raising and the lowering operators, 
respectively, for the quantum number defined by the self-adjoint operator 
CA. 

We assume that these operators satisfy the following three conditions. 

(i) Eo!,~ '), (~) o>. ] = 0  for x :~y  and ~,/3 = I, 2. 

(ii) [hx, o! , ; ) ]=0 holds for ~ = I , 2  unless yES(,.  The number of 
sites in the support set 5~', c A is bounded from above by an x-independent 
integer r ~> 2. 

(iii) There are x-independent finite constants h and o and we have 
Ilhxll ~<h and IIo!~)[I ~<o for any x~A and ct= 1, 2. 

Let ~A be a normalized simultaneous eigenstate of the Hamiltonian 
HA and the self-adjoint operator CA. We denote by EA the corresponding 
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eigenvalue of H A. Usually we take (/'A as the ground state ( / ,~ of Ha.  We 
assume the following: 

(iv) The state q~A exhibits a long-range order in the sense that 

(~A t~(l)~2 ai , ~ , ~  ! ~ - , ~ ) = ( ( 0  A, (O(A2)) 2 c l ) A ) > / ( / I O N )  2 ( 2 . 17 )  

holds with a constant 0 </~ ~< I. 

From the commutation relations (2.16) and the fact that ~,~ is an 
eigenstate of CA, we automatically have 

( ~ ,  O~'a~)= ( ~ ,  O ~ ) = 0  (2.18) 

In other words, the state ~A has vanishing order parameters. The relations 
(2.17) and (2.18) together imply that the state ~A exhibits an "obscured 
symmetry breaking." ~ 

For a nonvanishing integer M, we consider the state 

(O~-)M (/,~ 
~v~t I := (2.19) 

II(OX )M aS~ II 

where we set (O~)M= (O j-)-M for a negative M. Although the state (2.19) 
is ill-defined if (O~)M r = 0, the following theorems guarantee that this is 
not the case when certain conditions are met. 

The first theorem of the present paper is the following. Although the 
bound (2.22) for the energy expectation value may not look quite strong, 
it will turn out to be sufficient for a construction of infinite-volume ground 
states with symmetry breaking. A better estimate for the energy expectation 
value will be provided in the second theorem. 

When the assumptions (i)-(iv) are valid, and we Theorem 2.3. 
further have 

and 

[MI /~2 
~< (2.21) 

N 8r 

" In fact (2.17) and (2.18) may well hold in a finite system whose infinite-volume limit does 
not exhibit a symmetry breaking, in which case the parameter ,u vanishes as A "f Z a. What 
we really mean by an "obscured symmetry breaking" is that (2.17) and (2.18) are valid with 
a A-independent l~ > 0. 
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the state griM) of (2.19) is well-defined. The expectation value of the energy 
in the state satisfies 

1 (2.22) N I(~MI, HATt(AM))_EAI <C 1 IMIN 

where c~ is a constant which depends only on h, r, and/~. 

By taking r as the ground state ~A ~ of the Hamiltonian, the 
theorem implies that { ~(aM)},~ with a fixed M form "low-lying states" in the 
sense of Definition 2.1. The theorem will be proved in Section 4. 

In order to get a better estimate of the energy difference (at least for 
small enough IMI), we require higher symmetry. 

(v) The order operators satisfy the commutation relation 

[ 0~", 0(.t 2}] = iyC A (2.23} 

where ? is a real constant. 
In other words, we assume that the vector (~-1/20~), ?-'/20~2), CA) 

forms generators of SU(2). We do not, however, assume that the system 
has a full SU(2) symmetry. We only require a partial U(1)x Z2 [ ~O(2 ) ]  
symmetry as follows. 

(vi) We have UAH(UA) - t  = H  and UA~ A OC q)A, where UA = 
exp[i(n/x/~) O]  ~)] represents the n-rotation around the first axis. 

Then the second theorem is as follows. 

Theorem 2.4. 
further have 

When the assumptions (i)-(vi) are valid and we 

M 2 
~< c,_ (2.24) 

N 

with c2=min{t~2/(192r), ola/(24y)~/2}, the state gj]u) of (2.19) is well- 
defined. The expectation value of the energy in the state satisfies 

, 
~I(~G M),/G ~M))-G I ~c3 (2.25) 

where c 3 is a constant which depends only on h, o, r, ~, and 7. 

This theorem has a rather strong implication on the property of the 
low-lying spectrum of the Ha miltonian H , .  See Section 2.6. The theorem 
will be proved in Section 5. 
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Remark. The condition (vi) for Theorem 2.4 can be weakened to 
CAq~A = 0  if one replaces the definition of the trial state (2.19) by 

(O~-)M ~A + (O~)M q~A (2.26) 
~ M )  := II(O~-) M qsA + ( 0 ~ )  u '~A II 

2.4. States with Explicit Symmetry Breaking 

As we have already mentioned in the introduction, the particular set 
of states { ~M)} defined in (2.19) is not introduced as mere candidates of 
"low-lying states." These states have a special feature that they can be 
regarded as "parts" of infinite-volume ground states with explicit symmetry 
breaking. In order to demonstrate this fact, we shall here construct a 
sequence of "low-lying states" which exhibits symmetry breaking. The 
basic idea in the present construction appeared already in our earlier 
publication. 126J 

Let us consider a sequence of models which satisfy the conditions 
(i)-(iv) of Section 2.3 with the state ~A chosen as the ground state ~CA0) of 
the Hamiltonian HA. Note that we are only assuming the U(I) symmetry 
as is required for Theorem 2.3. For a positive integer k, we take a linear 
combination of the ground state and the "low-lying states" ~]MI as 

-A �9 (2k+ I) '/2 ~ +  (~u~M,+ ~u~-M)) (2.27) 
M = I  

We shall take the lattice A sufficiently large so that the bounds (2.20) and 
(2.21) are valid for any M with [MI ~<k. By using Theorem 2.3 and the fact 
that (~F~A i), HA ~AJ)) = 0  for i# j ,  we note that the state --A'--~k~ is normalized 
and satisfies 

lim 1 AtzaN { ('F'~k" HAZ~J'))-EA} = 0  (2.28) 

for any k. Thus {~=]k)}a with a fixed k form "low-lying sates." 
These "low-lying states" have the following remarkable properties. 

Theorem 2.5. 
state ~A k) satisfies 

and 

The expectation value of the order operators in the 

lim lim 1 ("--~Ak',--AO"'W'k'~>~/2/~~ , 
ktoo AtzaN 

(2.29) 

(2.30) 

822/76/3-4-2 
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where the prefactor x/~ is modified if the model has a higher symmetry. 
For example, we replace ~ with x/~ when the model has an SU(2)sym-  
metry. 

Outline of  Proof. We first note that 

1 ( ~  + ? )  2 2 -m-I' O -Z - i - =2k+  1 m=-k M'= k 
' ( r  MOJ(O~-)M' '~O')  

I1(O~-)M q,]O)ll "I1(0~-)M, r 
, (,~o,, (o~-) -  M o ~-(o~-)M-, r  

_ 1 ,y, II(O~-)M ,t,%O)ll I1(O~ U - '  r176 2k+ 1M=-k+l 

i ~ (@~o, (o2,)" (03)" @~0)) 
-2k  +1M=, l I ( O J ) J ' t ~  :]I(--6"-~-P=V~2'ii 

(0) + M "  M "  (0) _ _  ( '~  A , ( o  A ) ( o , , )  r  ) 

2 k +  1 

(2.31) 

where we used the shorthand notation ( O ; ) - - M = ( O A )  M for M > 0 .  (It 
must be noted that O5 is not the inverse of O~.)  We have used the facts 
that q~ is an eigenstate of C~f and O 3 are the raising and lowering 
operators for the charge defined by CA to get the second equality. To 
get the final line, we have set M " =  1 - M .  A similar calculation for 

[ k ) )  tO + = ( k ) ~  _ (~]kl, O~S,~ shows that (~-'lAk), VA--A , -  (E.~ k), O~E~k)), and hence the 
desired relation (2.29). Note that we de not have to use the Z2 symmetry 
as is assumed in the conditions (v) and (vi) of Section 2.3. 

The relation (2.30) is essentially proved in ref. 26. One only has to 
combine (7.26) of ref. 26 and Theorem6.1 of ref. 26. Although some 
estimates in ref. 26 implicitly assume the larger U(1)x Z2 symmetry, this 
is not necessary. A careful treatment (as we did above) shows that all 
the estimates in ref. 26 are valid for the models with only a global U(1) 
symmetry. ~2 I 

The theorem establishes that the state 3~ k~ exhibits explicit symmetry 
breaking. By applying the U(I)  rotation exp[iOCA] tO the state 3(A ~l, 
we also get states in which the order parameter is pointing in different 
directions. 

~-' One can considerably improve the estimates in ref. 26 by using the techniques developed in 
Section 5 of the present paper. 
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2.5. In f in i te -Volume Ground States 

Now we discuss the relation between the "low-lying states" in the 
sequence of finite systems and the infinite-volume ground states. We again 
observe that when there is an "obscured symmetry breaking" the naive 
infinite-volume limit of the finite-volume ground states is not an ergodic 
state and is hence unphysical. By forming suitable linear combinations of 
the (finite-volume) ground state and the "low-lying states" and then taking 
infinite-volume limits, we get infinite-volume ground states with explicit 
symmetry breaking. We conjecture that these infinite-volume ground states 
are ergodic, i.e., physically natural. 

In order to simplify the discussion, we make several assumptions on 
the model. We assume that each finite lattice A is a d-dimensional hyper- 
cubic lattice with periodic boundary conditions. We again denote by N the 
number of sites in A. We assume that the Hamiltonian (2.3) and the order 
operators (2.13) are translation invariant in the sense that we can write 
h., = r.,.(ho) and o!,. ~ I=l = r,.(o o ) for any x. Here r,. is the translation by the 
lattice vector x (which translation respects the periodic boundary condi- 
tions) and the operators ho and Oo are independent of A. 

A local operator A is an operator which acts nontrivially only on a finite 
number of sites [or, more precisely, on a finite-dimensional Hilbert space 
|  ~cAi W,. with a finite support set 6e(A )]. Let p•( --- ) = Tr.,rA[( ""  ) tSA] 
be a state of the system on A, where tSA is an arbitrary density matrix on 
WA. Given a sequence of (finite-volume) states {p , (  .-- )},~, we (formally) 
define 

p(A) := lim p.(A) (2.32) 
,4 T Z  d 

for each local operator A. The above p( --- ) is a linear map from the space 
of local operators to the set of complex numbers C. We call p( ...  ) a state 
of the infinite system. (See Appendix A for the general definition of a state 
in an infinite system.) It might happen, however, that the limit (2.32) does 
not exist for all local A. It is known that one can always choose a sub- 
sequence of lattices so that the limit is well-defined. See Appendix A for a 
proof. (An elementary proof can be constructed by using the "diagonal 
sequence trick" as is illustrated, e.g., in Theorem 1.24 of ref. 42.) 

We want to describe what we mean by ground states of the infinite 
system. Since it is meaningless to talk about eigenstates or eigenvalues of the 
total Hamiltonian HA when A T Za, a different point of view is necessary. 
Here we employ probably the simplest definition for ground states of an 
infinite system. As we discuss in Appendix A, the present definition is 
equivalent to the other definitions which are standard in the mathematical 
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literature. It simply says that a ground state should minimize the local 
energy. 

D e f i n i t i o n  2.6. We define the ground-state energy density Co by 

1 
Eo:= lim inf ~ ( A , H A ~ A )  (2.33) 

A'~Z */ ~.,t ~ #e"A 
II'~A II = I 

where the limit always exists. An infinite-volume state 09( ... ) is said to be 
a ground state if it satisfies 

co(hx) = Co (2.34) 

for any x ~ Z d. 

We also introduce the precise notion of ergodic states in an infinite 
system. In the following, we shall give a simple intuitive definition. See the 
remark at the end of the present section for the relation between the 
present definition and other related notions. 

In short the definition says that a state is ergodic if and only if any 
intensive bulk quantity has essentially no fluctuation in the state. Since the 
requirement is believed to apply to any physically realizable state of a large 
system, we might say that a translation-invariant state is physically natural 
if and only if it is ergodic. (See Remark 1 of Section 1.2.) It is also known 
that a nonergodic translation-invariant state can be decomposed into an 
"integral" over ergodic states. See the remark at the end of the present 
section. 

Defini t ion 2.7. Let/2 be a hypercubic region in Z a and denote the 
number of sites in/2 by 1/21. For an arbitrary local self-adjoint operator A, 
we define the corresponding bulk quantity as Aa :=Zx ~a%(A ) ,  where 
%(A) is the translate of A by a lattice vector x. Let p( -.. ) be a translation- 
invariant state, i.e., a state which satisfies p ( B ) = p ( % ( B ) )  for any local 
operator B and any x E Z d. The state p ( . . - )  is said to be ergodic if, for 
any A, the intensive bulk quantity A~/I/21 exhibits vanishing fluctuation in 
the sense that 

1 
lim p { [ A ~ - - p ( A a ) ]  2 } = 0  (2.35) 

i~lToo I-" ~ 

For each finite A, let ~(A ~ be a ground state of HA. We can assume 
~(o) is translation invariant since the Hamiltonian is. Then it is easy to 
verify that the infinite-volume state defined by 

co(A) := lim (q0(AO), A~(A ~ (2.36) 
A TZ a 
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for any local operator A (by taking a suitable subsequence) is indeed an 
infinite-volume ground state in the sense of Definition 2.6. 

Assume that each finite-volume ground state ~ exhibits an 
"obscured symmetry breaking" in the sense that it satisfies (2.17) and 
(2.18). Then by using Lemma C.1 we can show that 

1 
09( [O~ ~-  o9(O~)] 2)/> (/20) 2 (2.37) 

inl 2 

for any finite region f2 c Z d, where O~ I o I=l =~.,-Ea x �9 This implies that the 
ground state co( .-. ) is not an ergodic state, and is hence unphysical. 

We still do not know how to construct ergodic ground states in a 
general setting. In Appendix B, however, we present a general construction 
of ergodic infinite-volume ground states in a system where a discre te  
symmetry is spontaneously broken and a gap above the first "low-lying 
eigenstate" is generated. In what follows, we make some observations 
which suggest that a similar construction as in Appendix B might work in 
systems with a broken continuous symmetry. 

Let us start from a simple but important theorem which summarizes 
the relation between "low-lying states" and ground states of an infinite 
system. 

Theorem 2.8. Let {r be "low-lying states" in the sense of 
Definition 2.1, and assume that each ~ defines translation-invariant 
expectation values, i.e., ( r  A ~ )  = ( ~ ,  z.,.(A) r for any x ~ A  and for 
any local operator A. Then the state 

oY( . - . ) :=  lim (r ( . . - )  ~ )  (2.38) 
A Tz a 

defined by taking a suitable subsequence of lattices, is a ground state. 

P r o o f .  The translation invariance implies 

( ~ 'A , HA ~ '~ ) = N ( ~ 'A , h x qb 'A ) (2.39) 

for any x e A. Then the condition (2.4) of "low-lying states" reads 

lim {(qb~, h, .qb~)-(~o~, h,.~o~)} = 0  (2.40) 
A T Z  ' t  " " 

which reduces to og'(h~)= Eo for any x. II 

It should be stressed that in the above the "low-lying states" ~ need 
not be ground states or eigenstates of finite systems. 
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The states ,~k)def ined  in (2.27) and its U(l ) rotations are "low-lying 
states" with translat ion-invariant  expectat ion values. By using Theorem 2.8 
and Theorem 2.5, we get the following impor tant  result, which completes 
a construct ion of infinite-volume ground states with explicit symmetry  
breaking. 

C o r o l l a r y  2.9.  For  0~<0~<2rt, define infinite-volume states by 

coo(--- ) := lira lim (ei~ *), ( . . . )  ei~ ) (2.41) 
k T ~ A ' f Z  a 

where we take subsequences if necessary. The states o90(... ) are infinite- 
volume ground states. They exhibit explicit symmetry  breaking as 

co0[o!, I )] = m cos 0, co0[o!,~ I] = m sin 0 (2.42) 

for any x. The order parameter  m satisfies 

m >_- ~ o# (2.43) 

for systems with a U(1) symmetry  and m ~> x /~  op for systems with an 
SU(2) symmetry.  

It is believed that in a system where a U(1 ) symmetry  is spontaneously 
broken the nonergodic ground state co( . - - )  [defined in (2.36)] is decom- 
posed as 

L f2n ,4,Q t,~erg~ - -~ ~o  , . . .  ) (2,44) co( "'" ) - 2~z o 

where ergodic COO ( - ' -  ) is an ergodic ground state which satisfies 

coergodic [-O(I }] r,~ergodic F r~(2)-I 0 .,- = mmax cos 0, = (2.45) w 0 LVx j mma x sin O 

where mma x > 0  is the max imum possible value of the order parameter  
within the infinite-volume ground states. 

Let us examine how the order parameter  mmax is related to the long- 
range order observed in two-point  functions. There are two different ways 
of defining the long-range order parameter.  The first definition deals 
directly with the infinite-volume state. We define the long-range order 
p a r a m e t e r / ~  for the (nonergodic) state co( . . .  ) by 

p, := lim ~ [co( (O~' )~) ]  ]/2 
a~z~o IQI 

(2.46) 
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The other definition deals with a sequence of finite-volume ground states. 
We define the lang-range order parameter/a 2 as 

1 
P2 := lim sup [-(q~o), (O~A~,)2 ~tao))] 1/2 (2.47) 

A t Za -~ 

where r is the ground state on A. Note that this definition is motivated 
by (2.17), one of the basic assumptions of the present paper. 

It is quite likely that the above two definitions give the same result for 
a large class of systems. Unfortunately, we are only able to prove the one- 
sided inequality/~1/>/~2. (This follows from Lemma C.I.) Let us proceed by 
assuming that the equality/a~ = #2 is valid. 

Assuming the decomposition (2.44), we see, for sufficiently large 
hypercubic region (2, that 

1 co((O~))2) ~ 1 12n (mmax)  2 
IOI 2 - 27~ o dO (mma x COS 0)  2--- 2 (2.48) 

ergodlc where we have used that to o ( - - . )  is ergodic. Then by using (2.46) and 
(2.48), we observe that mma x = V/20/.t I . On the other hand, the inequality 
(2.43) and the definition (2.47) of the lang-range order parameter 
immediately imply that m/> ~ 0#2. Combining these two equations with 
the conjectured p~=p_,, we get m>~mma x. Since mmax is defined as the 
maximum value of the order parameter, this leads us to the (plausible but 
nonrigorous) conclusion that we indeed have m = mmax. 

This observation motivates us to state the following conjecture. 

Conjecture 2.10. The infinite-volume ground states too( "'" ) defined 
in (2.41) are nothing but the desired ergodic (i.e., physically natural) ground 

(,lergodic( states w o ~ -.- ). 

Unfortunately, we have no direct evidence to support the conjecture. 
For systems with a discrete symmetry, however, we can prove that the 
statement corresponding to the above conjecture is in fact valid. See 
Appendix B. 

R e m a r k s .  1. Our Definition 2.7 of ergodic states is actually not 
exactly the same as the standard o n e .  c9'43"451 For the particular class of 
systems we are considering here, however, it turns out that our definition 
is equivalent to - the  standard definition of Za-ergodic states. See, for 
example, Sections 6.3 and 6.5 of ref. 43. (In fact, our definition is motivated 
by Lemma 6.5.1 of ref. 43.) 

There is a beautiful decomposition theory for Zdergodic states. It states 
that an arbitrary nonergodic translation-invariant state can be decomposed 
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into a kind of "integral" over ergodic states. See Section 1.7 (especially 
Theorem 1.7.10) of ref. 45 or Section 6.4 of ref. 43. A detailed treatment of 
the decomposition theory can be found in Chapter 4 of ref. 9. 

A disadvantage in the notion of ergodic states (as in Definition 2.7) is 
that one has to a priori assume the correct invariance of the states in order 
to get a physically natural state. Another way of characterizing physically 
natural states is to make use of the notion of pure states. This notion is in 
some sense more abstract than that of ergodic states, and does not make 
use of any specific invariance. See refs. 9 and 43 for the definition of pure 
states and for what is known about them. (One should be aware that the 
notion of pure states for an infinite system is distinct from that for ordinary 
quantum mechanics with finite degrees of freedom.) 

2. Another way of (formally) defining infinite-volume ground states 
with explicit symmetry breaking is to apply an infinitesimal symmetry- 
breaking field to the system. Let r176 be a ground state of the 
Hamiltonian H A -  BO~ 11, where B is real-valued symmetry-breaking field, 
and define a state of the infinite system by 

05( ...  ) :=l im lim (~tA~ ( - . - )  qSt~ (2.49) 
BJ.O A ' [ Z  d 

We expect that the state 05(---) is identical to cO0=o(... ) [and to c~176 ~ ")]. 
The existence of a symmetry breaking in the state 05(-.-) (under the 
assumption that there is a long-range order) was proved in refs. 18 and 26. 

2.6. "Low-Lying Eigenstates'" in Finite Systems 

Let us discuss another implication of our theorem which has direct 
relevance to numerical diagonalization approaches to quantum many-body 
systems. 

Consider a lattice A with N sites and a quantum many-body system 
on it which satisfies the assumptions (i)-(vi) in Section 2.3. Note that we 
require the higher U(1 ) x Z2 symmetry. We denote by E~ ~ the ground-state 
energy of the Hamiltonian HA. Then we can state the following. 

C o r o l l a r y  2.11. For each nonvanishing integer M which satisfies 
the bound (2.24), one can find an eigenstate a~ ~M~ of the Hamiltonian HA. r A 

The state r is orthogonal to the ground state r and the states q~A M~ 
with distinct M are orthogonal to each other. The energy eigenvalue E~A M~ 
of the state r satisfies the bound 

M 2 
EIM~_ ~-~o~ (2.50) A ~A ~< c 3 - -  

N 

where c3 is the constant introduced in Theorem 2.4. 
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Proof. Since the reference state ~A is an eigenstate of CA, the 
commutation relations (2.16) imply that the variational states ~M~ of 
(2.19) are orthogonal to the reference state q~A- Similarly, we see that ~ u l  
with distinct M are orthogonal to each other. The desired result is then a 
consequence of the variational principle and Theorem 2.4, in which we set 
, t 'A = , t '~  ~ I 

Consider a sequence of finite lattices {A } which tends to Z a. Suppose 
that for each A we have a quantum many-body system which satisfies the 
assumptions (i)-(vi) with constants h, o, r,/a, and ~, which are independent 
of A. Then the above corollary shows that there exist ever-increasing 
numbers of "low-lying eigenstates" whose excitation energies are bounded 
from above by a constant times N - i .  Such a finite-size scaling behavior is 
characteristic for systems with a continuous symmetry breaking and may 
be regarded as a criterion for detecting the existence of a symmetry break- 
ing from numerical diagonalization in a series of finite systems. Such an 
approach has been taken in refs. 8, 7, and 35. We stress that this is the 
first time that the existence of ever-increasing numbers of "low-lying eigen- 
states" with particular finite-size scaling behavior has been proved. 

Nambu-Golds tone  excitations associated with the symmetry breaking 
should also be observed as "low-lying excited states" in finite systems. 
According to the common wisdom, the excitation energy of a N a m b u -  
Goldstone excitation should be at least of order L 2, where L denotes the 
linear dimension of the system. Therefore the above corollary guarantees 
that in three dimensions the "low-lying eigenstates" which are "parts" of 
infinite-volume ground states have much lower energies than Nambu-  
Goldstone excitations and can be distinguished from the latter. 

Remark. One migth wonder if one can get conclusions similar to 
Corollary 2.11 from Theorem 2.3, our first theorem on the "low-lying 
states." By follbwing exactly the same logic as the above, one finds that 
Theorem 2.3 implies the existence of "low-lying eigenstates" whose excita- 
tion energies are (at most) of order 1. Unfortunately, such information 
alone is not at all meaningful. In any system (with or without symmetry 
breaking), one can construct excited states with the excitation energy of 
order 1 by simply locating a finite number of "local defects" into a (finite- 
volume) ground state. (We wish to thank Tom Kennedy and Bruno 
Nachtergaele for clarifying this point, which was not properly treated in the 
earlier version of the present paper.) 

In this sense, Theorem 2.3 carries no nontrivial information about the 
low-lying spectrum of the finite-volume Hamiltonian. As we have stressed 
before, however, the true value of this theorem is that it establishes that the 
particular class of states (like ~M~ or ~k~) are "low-lying" and converge 
to infinte-volume ground states. 
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3. EXAMPLES 

In this section, we discuss some examples to which our general results 
apply. Although we only discuss selected models representing typical situa- 
tions, the reader can easily extend the following analysis to much wider 
class of quantum many-body problems. 

3.1. Ising Model  Under Transverse Field 

We briefly discuss the Ising model under transverse magnetic field with 
the Hamiltonian (1.1) considered in Section 1.2. If the field B is smaller 
than the critical value, the'unique ground state qs~A~ expected to exhibit 
an "obscured symmetry breaking" in the sense that the relations (q~o~, 
OAq~tA0))=0 and (qS~A~ (O,~)2qS~~ 2 hold, where the order 
operator OA is defined in (1.2). This can be proved rigorously for suf- 
ficiently small B. 

Then Horsch and vonder  Linden's theorem (Theorem 2.2) ensures that 
there exists a "low-lying eigenstate" whose excitation energy is bounded 
from above by a constant times N- t .  Note that the theorem does not 
reproduce the expected exponential decay (1.5) of the excitation energy. 

3.2. Heisenberg Ant i fe r romagnet  w i th  N6el Order 

We discuss the Heisenberg quantum antiferromagnetic spin system, 
which is a typical model with a spontaneously broken continuous sym- 
metry. Let A denote the d-dimensional L x .-. x L hypercubic lattice with 
periodic boundary conditions, where L is an even integer. With each site 
x e A  we associate the spin operators (S.t~ j~, c~21 ~3~ o.,. , S x ) for spin S =  1/2, 1, 
3/2 ..... The Hamiltonian (2.3) is defined by the local Hamiltonian 

h, �89 E + s ' ,2 ' s l2 '  + ,3, , , ,  = , .,. _,. 2S x S,. ) (3.1) 
y ;  I x - y l  = 1 

where 0 ~< 2 ~< 1, and the sum is over the sites y neighboring to x. When L 
is finite, the ground state q ~  of the Hamiltonian (3.1) is rigorously 
known 133"32'31 to be unique and satisfies 

C A r  (3.2) 

with C,~=~.,-~A 13~ S x  ' 

For ~ =  1, 2, we define the order operators (2.13) by the local order 
operators 

o!~.,=~S~ ~1 if x ~ A  
�9 ~ - S ~  ~ if x ~ B  ( 3 . 3 )  
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where we have decomposed A into two sublattices as A = A w B, so that for 
any neighboring sites x, y we have either x e A, y ~ B or x ~ B, y e A. 

It is expected, and is partially proved by the Dyson-Lieb-Simon 
method and its extensions, (m'16" 21' 22' 27' 28' 39~11 that for any d~>2 and 
0 ~< 2 ~< 1 the ground state ~<0~ exhibits a N~el-type long-range order. We = A  

expect that the condition (2.t7) is valid with # > 0 (where/.t depends on d 
and it, but not on the lattice size N). On the other hand, the absence of 
explicit symmetry breaking as in (2.18) is obvious from the uniqueness of 
the ground state. We thus conclude that there is an "obscured symmetry 
breaking." 

Assuming the existence of the N6el order (2.17), we can apply our 
"low-lying states" theorems. The model has a desired U(I )x  Z2 symmetry. 
We can use Theorems 2.3 and 2.4 by noting that the present order 
operators OcA j~ and O(A 2), along with the above-defined CA, satisfy the 
requirements in the theorems with y = 1. 

Then we can make use of the general considerations in Section 2.6 and 
conclude that there are "low-lying ei~enstates" with excitation energies not 
larger than of order N - t .  For the SU(2)-invariant Heisenberg antiferro- 
magnet with i t=  1 in (3.1), Momoi 1~61 constructed some additional "low- 
lying eigenstates." 

In order to apply the general results in Section 2.5, we need extra care. 
Since the order operators (3.3) do not satisfy the requirement of the trans- 
lation invariance, we have to redefine what we mean by a "site." We group 
together 2 d sites forming a 2 x . . .  x 2 hypercubic region (i.e., a unit ceil) 
and call such group a "site." After redefining the local Hilbert space, the 
local Hamiltonian, and the local order operators according to the new 
notion of "sites," the model satisfies the assumptions of Section 2.5. We can 
then construct (presumably ergodic) ground states with explicit symmetry 
breaking as in (2.41). 

We stress that the applicability of our "low-lying states" theorems is 
not limited to models on the hypercubic lattice. For example, the model on 
the triangular lattice with the same Hamiltonian (3.1) with 0 ~< it ~< 1, where 
y is summed over nearest neighbor sites of x, has been attracting con- 
siderable interest. (See refs. 8, 7, 29, and 35 and many early references 
therein.) Anticipating the so-called 120 ~ structure, we set the order 
operators as 

,/5 (__i Cy {2)k~ 

/ 1 \ 

s:,,+ z (-�89 +Ts<,: .,+a " ".,-,B\ 2 " - - -~-o . , .  ]+.,~2c S"> 

(3.4) 

: , / 5  ,,, ls,2,  + 2 (3.5) 
07'=.,.oI2  / 2 - 2 x / 
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where we have divided the triangular lattice into three sublattices A, B, 
and C so that neighboring sites x, y always belong to different sublattices. 
These order operators again satisfy the conditions for the theorems with 
the generator CA =~.~ ~3) S x . We can then apply the general discussions in 
Section 2. 

3.3. Bose-Einste in  Condensat ion  in H a r d - C o r e  
Bose Gas on a Lat t ice  

We give a brief discussion on the Bose-Einstein condensation problem. 
It turns out that, by following the general discussions given in Section 2, 
we are naturally led to consider ground states with unconserved particle 
number. 

Let A be the d-dimensional L x ...  x L hypercubic lattice with periodic 
boundary conditions, where L is an even integer, and d>~ 2. With each site 
x we associate the creation operator a* and the annihilation operator a~ of 
a spinless boson. We consider the Hamiltonian (2.3) defined by 

K 
h.,.=-~ ~ (a.*ay+a*ax)+ Vnx(n x -  1) (3.6) 

y ;  I x - y [  = 1 

where the sum runs over the sites neighboring to x, and nx = a*ax denotes 
the number operator. 

We shall take the limit of infinitely large on-site repulsion VT ~ before 
the infinite-volume limit and restrict ourselves to the states with finite 
energies (in a finite volume). This defines the so-called hard-core Bose gas. 

It is well known that the hard-core Bose gas on a lattice is equivalent 
to the S =  1/2 quantum X Y  model on the same latticeJ 341 Based on the 
equivalence and an extension of the infrared bound method of Dyson 
et aL ~1~ it was proved by Kennedy et al. ~22) and Kubo and Kishi c'-s) that 
the present model exhibits a Bose-Einstein condensation in the following 
sense. Let q~o) be the unique ground state of the Hamiltonian (3.6) with 
the particle number equal to N =  La/2. Define the order operators (2.13) by 

o!~1= t~ a* + a~ a.* - ax ~ (3.7) 
�9 2 ~ '  ~  = ~ 2i 

where ~ is the projection operator onto the space of finite energy states, 
i.e., q~ such that nx(1 - n x ) q ~ = 0  for any x. Then the result of refs. 22 and 
28 is that the condition of the long-range order (2.17) holds with a finite 
/a which is independent of the lattice size N. On the other hand, the absence 
of explicit symmetry breaking as in (2.18) is manifest since the state q5 A 
has a fixed particle number. We see that there is an "obscured symmetry 
breaking." 
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It is not hard to see that we can apply our Theorems 2.3 and 2.4 to 
this situation. For this, we replace the Hamiltonian (3.6) with ~h x ~ .  Note 
that the latter is a bounded operator, while the former is unbounded. Since 
we are only dealing with states with finite energies, this replacement does 
not change any physics. By using the replaced Hamiltonian and the order 
operators (3.7), we find that the model has a desired U(1)x Z2 symmetry. 
The relevant U(1) symmetry is that for the quantum mechanical phase 
generated by CA=~_,.,.~,~ (nx--1/2), and the Z2 symmetry is the hole- 
particle symmetry. 

Note that the "low-lying states" in the present model have different 
particle numbers than the ground state. The "low-lying state" (2.27) with 
explicit symmetry breaking can be written as 

z-,~, 1 { ~ ( ~ (~ .~A  "*~M~'~ ~A 
--A (2k + 1)t/2 ~ ' +  \ l l ~  a.,)M ~,11 

M = I  

II(E,,A a.,.) M ~r176 (3.8) 

Consequently the (presumably ergodic) ground states r have a 
peculiar feature that they are constructed by summing up the states with 
different particle numbers as in (3.8). We further find from (2,42) that the 
state has nonvanishing expectation values of the creation and annihilation 
operators, for example, as 

O9o= o(a*) = O9o = o(ax) >~ x/~ o/~ (3.9) 

for any x. 
In a theoretical treatment of the Bose-Einstein condensation, it is 

standard to con~ider states without particle number conservation and with 
nonvanishing expectation values for creation and annihilation operators. 
Usually such states are introduced within the framework of a certain mean- 
field theory. We have seen that such states arise naturally if one tries to 
consider ergodic infinite-volume ground states. 

Remark .  Since it is physically meaningless to compare the energies 
of two states with different particle numbers, the existence of "low-lying 
states" in the present situation has less physical significance. A more impor- 
tant fact is that the states COo( ... ) are really infinite-volume ground states. 
This point requires further discussion. 

A physically natural setup in the present problem is to consider a finite 
system with a fixed particle number. Then one can add an extra term 
v Z.~, A nx to the Hamiltonian without changing any physics. If we were to 
consider states without fixed particle numbers, Definition 2.6 is clearly not 
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adequate, since it is sensitive to the value of the "chemical potential" v. 
Better definitions in the situations without particle number  conservation 
are those of fit or ffz in Appendix A, with allowed perturbations (local 
operators A in the former and maps T in the latter) restricted to those that 
preserve the particle number. This definition is clearly independent of  the 
value of  v. To prove that the above Wo(- . - )  is a ground state in this 
sense, it suffices to use the relations between different definitions (Proposi-  
tion A.2) along with the fact that Wo( -.. ) is a ground state (in the sense of 
Definition 2.6 or (a3) when v = 0. 

3.4. Superconduct iv i ty  in Latt ice Electron Systems 

We shall discuss applications of our  theorems to lattice electron 
problems. A class of possible applications deals with magnetic ordering in 
an electron model. Since such problems can be treated in exactly the same 
manner as the quantum spin systems discussed previously, we leave the 
details to the interested reader. We concentrate on a symmetry breaking 
intrinsic to interacting electron systems, namely superconductivity. 

Consider an electron system on a finite lattice A and denote by Cx* and 
c,., the creation and annihilation operators, respectively, of an electron at 
site x with spin a =  T, ~. We consider a Hamiltonian which commutes  
with the total electron number  

N , ,  = ~ n.,. r + nxl (3.10) 
x 

* A typical example is the so-called Hubbard  model. where n va = C x-aC.x.a. 

(See, for example, refs. 31 and 37.) 
A class of Hubbard  models with attractive interactions is believed to 

exhibit superconductivity in their ground states. ~3 It is also expected that 
certain Hubbard  models with repulsive interaction also exhibit super- 
conductivity. The latter possibility is interesting not only because of its 
possible connection with high-T,, superconductivity, but as a new type of 
collective phenomenon in strongly interacting electron systems. 

A standard superconducting phase can be characterized by a conden- 
sation of certain electron pairs, which manifests itself as an (off-diagonal) 
long-range order in the electron pairing correlation function. For  example, 

t3 As a straightforward consequence of Lieb's theorem, ~176 one finds that some attractive 
Hubbard models exhibit an off-diagonal long-range orderY ~} These models, however, do 
not fit into the present discussion since the order operator (accidentally) commutes with the 
Hamiltonian. The same comment applies to the solvable models of ref. 11. 
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the condensation of singlet pairs can be measured as a long-range order 
(2.17) with respect to the order operators defined by 

( l)_ 1 , , _ 
~ - ~  (P.,.cxrc.,.~-Px cxTcxt) (3.11) 

1 

~ 2ii (P"C*~rc*~ + ~ cxTc"~) (3.12) 

where p.,. (with IP_,-I = 1 ) is a certain phase factor. It is easily checked that 
the model has a U(1 ) symmetry and satisfies the conditions for Theorem 2.3 
with CA = (Ne- N)/2, where N denotes the number of sites in A. We can 
then follow the general discussions in Section 2 and construct (presumably) 
ergodic ground states with an explicit U(1) symmetry breaking. As in the 
Bose-Einstein condensation problem, the ground states do not conserve 
particle numbers. Except for half-filled models with special Hamiltonians, 
the models do not have the U(1)xZ2 symmetry necessary to apply 
Theorem 2.4. 

We remark that it is possible to treat other types of pairing with some 
extra care. To treat triplet pairing, for example, we first redefine what we 
mean by sites of the lattice. We divide the lattice A into a disjoint union 
of nonoverlapping pairs of sites. We then regard each pair {x, y} as a "site" 
of the lattice. The local order parameters to measure a possible condensa- 
tion of triplet pairs are defined by summing up the following local order 
operators over all the "sites": 

1 , , , 
o ~'.,~.,. I = ~ (c*T c,~ + c.~ < , , T  - -  <~, <,.~ - -  ~. , -~ ~ . , . T )  (3.13) 

0(2) , = 1 , , I.,. v, ~ii(c.~rc.,'~ +c.*~c*r +c-~Tc.,'x +cxlc.,'t ) (3.14) 

We again set CA = ( N e -  N)/2 and apply Theorem 2.3 to control "low-lying 
states." 

Remark. The lattice fermion problems considered here are different 
from other examples in that the corresponding Hilbert space is not a simple 
tensor product of'local Hilbert spaces as in (2.t) or (A.I). This difference 
causes no problem for proving our "low-lying states" theorems since we 
only make use of some commutation relations between operators in the 
proof. But some results about infinite-volume states, which are mainly 
quoted from the literature in Section 2.5 and Appendix A, may not apply. 
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3 .5 .  S = 1 A n t i f e r r o m a g n e t i c  C h a i n  

A rather interesting application of the "low-lying states" theorem can 
be found in the problem related to the so-called Haldane gap. Let A be the 
one-dimensional open chain { 1, 2 ..... N}. With each site x e A we associate 
the three-dimensional Hilbert space for an S--- 1 quantum spin and denote 
by (S~ ~, S~ 2J, S~,. 31) the corresponding spin operators. We consider the 
Hamiltonian 

N - I  N 

HA = ~ ( S ( I I S ( I )  _ ]_~(2 )K , (2 )  (3) (3) (3.15) +2S.,. S , . + I ) + D  Y' (S~3q 2 x - - X  --A" + 1 ~ x  ~.X" + I x / 

x = l  x = l  

where 2 and D are parameters. 
Haldane cj4~ argued that in a finite range of the parameter space 

including the Heisenberg point 2 = 1, D = 0, the model is in an exotic phase 
(now called the "Haldane phase") where the unique infinite-volume ground 
state is accompanied by a finite excitation gap. This was quite surprising 
since the Heisenberg antiferromagnetic chain with S = 1/2 is known to have 
vanishing gap from the Bethe ansatz solution. (See also ref. 3.) Haldane's 
prediction was that the gap-containing Haldane phase exists if and only if 
the spin S is an integer. 

The existence of the Haldane phase in S =  1 chains has been proved 
rigorously only in the exactly solvable VBS model, ~2) its non-SU(2)- 
invariant extensions, ~z~ and perturbations to the dimerized VBS model. 1231 
A general treatment of the VBS-type models is given in ref. 12 and the 
S =  1 model mentioned here is one of the examples. The S =  1 model of 
ref. 12 and the method of constructing the ground state (but not the proof 
of the existence of a gap) were rediscovered by other authors. 12~ 

The ground state in the Haldane phase is disordered in the sense that 
the spin-spin correlation functions decay exponentially. Den Nijs and 
Rommelse ~38~ pointed out that the ground state in the Haldane phase of an 
S = 1 chain has a "hidden antiferromagnetic order." For i =  1, 2, 3, let the 
string order operator be 

[ 1 O~ ~ := S.c~ i) exp in i~ (3.16) 
. r =  1 L y =  I 

If we denote the unique normalized ground state for finite A with N sites 
oh(o) as ~ A ,  we expect to have 

(~o~, (0~))~ ~o))  >>. (o~,,N)2 (3.17) 

in the Haldane phase with a " ) =  a Iz) > 0  and a*3~> 0. 
The condition (3.17) corresponds to the antiferromagnetic ordering of 

spins with S~)= 1 and S ~ = -  1, where spins with S~i~= 0 are inserted 
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randomly in between them. t38"a6~ Again the existence of the "hidden 
antiferromagnetic order" has been established only for special classes of 
models ment ioned above. 

Let us consider the following trial states: 

(~)(JS(o) 
~(Ai>_ v,~ --,~ (3.18) 

for each i =  1, 2, 3. We also introduce the operators  

U(A~'=expIirt  ~, S(~ ~,] (3.19) 
. x =  1 

which rotates all the spins by rt a round the ith axis. Note  that the unique 
ground state satisfies U(i)r176 r ~ for any i and the trial states (3.18) 
satisfy 

~b~ y) if i=j rr(~)wtJ) = (3.20) 
- - A - - ,  [ _ e(Aj) if i~j  

From the difference of parities, we find that the four states r ~(A*), ~(s 
and ~g[3) are or thogonal  to each other. A 

It is not hard to check that  we can apply Horsch and yon der Linden's 
theorem (Theorem 2.2) to this situation. We find for each i =  1, 2, 3 that 
the trial states ~g(A ~) are "low-lying states." The Hamil tonian  (3.15) on a 
finite open chain should have (at least) three "low-lying eigenstates." 
(Again the excitation energies of the "low-lying eigenstates" are believed to 
decay exponentially in N, but the bound in the theorem fails to reproduce 
this.) These "low-lying eigenstates" are nothing but the so-called "Kennedy 
triplet" which has been observed in exact solutions, (2~ numerical simula- 
tions, (2~ and actual experiments in impuri ty-doped samples, tIs) The 
existence of the Kennedy triplet is characteristic in a Haldane  gap system 
on a finite open chain. In a periodic chain, it is believed that the unique 
ground state is accompanied by a finite excitation gap. 

The fundamental  connection between the hidden order (3.17) and the 
existence of the low-lying triplet was discussed by Kennedy and Tasaki  (23) 
from the viewpoint of the "hidden Z2 x Z2 symmetry  breaking." Our  
remark here is that this connection can be made (formally) explicit at least 
in one direction.~4 

)4 That the existence of a hidden antiferromagnetic order should imply the existence of the 
low-lying triplet was pointed out to one of the authors (H.T.) by lan Altleck in July 1992. 
The present work initially emerged from an attempt to look for a proof of his claim, 
although the main interest of the authors has shifted in the long run to problems with con- 
tinuous symmetry breaking. 

822 76/3-4-3 
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The present example is different from the others in that the three "low- 
lying states" and the unique (finite-volume) ground state converge to a 
unique infinite-volume ground state. This is related to the nonlocal nature 
of the order operators. See refs. 2, 20, and 23 for more details. 

4. P R O O F  OF F IRST T H E O R E M  

In the present section, we prove Theorem 2.3 for M >  0. Throughout 
the proof, we drop the subscript A from O~, HA, En, cbA, ~M~, etc. Our 
goal is to bound the quantity 

1 
A ~4~ : = ~  { ( T  ~M~, HT~M~) -E}  

(~, ( 0 - )  M H ( O +  ) m cb)-(cl) ,  ( 0 - )  M ( 0 + )  M Hqb) 

N(q~, ( O - ) u  (O + )u r  

= ~ (cp, ( 0 - )  M [h.~, (O+) M] ~)  

.,'~A N ( ~ , ( O - ) M ( O + ) M ~ )  
(4.1) 

The final expression in (4.1) motivates us to decompose the operator 
O + as 

with 

O + = Q.~ + a.,. (4.2) 

Q.,.:= '~. o +, R,.:= Z ~ (4.3) �9 . y 

y ~ . ~  y E .9~ 

Note that we have [Qx, hx] = 0  and [Qx, R.,.] = 0  from the assumptions 
(ii) and (i), respectively. 

Although O + does not commute with the local Hamiltonian h.,., Q,. 
does. This means that it is easier for us to treat Q.~ than O +. A key obser- 
vation for the proof is that the difference between O + and Q.~, which is 
denoted as R.~, is small compared to O +. The following useful lemma, for 
example, makes use of this fact. 

Lamina  4.1. Suppose that the conditions (2.20) and (2.21) for N 
and M are satisfied. Then for k = 1, 2 ..... M, we have 

(r (Q.,)M- k (Q.,)M- k r  
<~ ( poN) - zk (4.4) (q~, (Q.,)M (Q.,.)M ~) 

We shall prove the lemma at the end of the present section. 
By using the expansion formula 

(O + )M= ~ (M)(Qx)M_ k (R.,.) k (4.5) 
k = 0  
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we get 

(o,  ( O - )  M [hx, (O+) M] O) 

= Z ~ k l Qx) (R*lk[hx,(Qx)M-'(R~l ']q 5) 
k = O  / = O  

= ( R x )  ] (Q.,.) O) * = o , = J  k l Qx)  (R,)k[hx,  l M-, 

(4.6) 

The Schwartz inequality and the definition (2.2) of the operator norm 
yield the following useful bounds: 

I(r A*BCO)I <~ [(O, A*AO)(O, C*B*BCO)] t/2 

~< Ilnl[ [(O, A*AO)(r C*CO)] ~/z (4.7) 

for general operators A, B, and C. 
By applying (4.7) to (4.6) and noting 

[I(R*) k [hx, (Rx)t][I <<.2h(2ro) k+l, we get 

(o, (o - )M [h,., (o  + )M] 
- -  7-A---,Z-ff--- ~ t ' - -  O) 
(r (Qx) o )  

~< k l k = O  / =  1 

X 

that (ii) and (iii) imply 

( . M - k  . M - ,  r  [(r Q., . )  (Q,)M-k O)(O, (Q,) (Q.,.)M- t 
(0, (Q.,)M (Qx)M cI9) 

<<.2h ~ ~ (M)(M)(2ro)k+/(poN)_(k+, , 
k=o /=~ k 1 

2r M 
+ 

1"2rM'~F (2r  M ' ] _  1] 
~< 2h exp ~,~"N')Lexp ktl N /  

<~ 2heU/4 8r(e ~/4 - 1 ) M 
I ~2 N 

= 16rhla_2(eUn _ eU/4 ) __ M 
N 

where we have used the bounds (4.4) and (2.21). 

(4.8) 

822/76/3-4-3* 
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Again using (4.5), we get 

(q,, ( 0 -  ) M (o+ )M ~) 

= (~, (Q.,)M (Qx)M ~) 

(R.,.) (Q.,.) - '  ~ )  (4.9) 
+ ~ '  k 1 k,I k / k  / 

where the summation on the right-hand side runs over all k, l =  0, 1 ..... M 
except for k = / = 0 .  From (4.7) and (4.4), we get 

I ( ~ ,  ( O  - )M ( o  + )M q,)  

> ~ I - ~ '  k l 
k,l k /x ,  / 

[(r (Q.,)M-~ (Q.,.)M-k r (Q,)M-,  (Q.,.)M-, q~)],/2 
X 

( ~ ,  (Q. ,)M (Qx)M q5) 

2r)2 _1] 
> / 1 - - [ ( 1  +•NJ 

>/2 - e "/z (4.10) 

Note that, since 0 ~< tt ~< 1, we have 2 - e ~'/2 >/2 - x/~ > 0. 
By combining (4.1), (4.8), and (4.10), we finally get 

e u/2 - e v / 4  M M 
[ACM) I ~< 16rh #2(2 _ e,/2 ) N = cl -~ (4.11 ) 

Proof of Lemraa 4.1. We write a,, := (~, (Q*)" (Q~)" ~). We will 
prove that for m = 1, 2 ..... M, we have 

am >~ (#oN)2 (4.12) 
am-  I 

Then the desired bound (4.4) follows by multiplying (4.12) with m =  
M - k +  1, M-k+2, . . . ,  M. 

We start by evaluating a~ as 

al ( ~ , ( O -  R* O + -  = - .,-)( R,- )  r  

~ ((/), O -  O+r  2(2o) 2 rN 

= �89 {(q), O - O  +q) )+  (q), O + O -  6~) + (q), [ O - ,  O + ] q~)} - 8oZrN 

>~ (@ (011~) 2 ~) + (qS, (0(2)) z q~) -  2oZ(l + 4 r  2) N (4.13) 

where we have used (i)-(iii) to bound the norm of the commutators .  
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By substituting the assumption (2.17) on the existence of a long-range 
order and the bound (2.20) for N, we get 

a , > ~ 2 ( # o N ) 2 ( 1  l+4r2"~/~2N / 

f l  1 + 4r2"~ 
>~ 2(~oN) 2 

? 6 7  J 
(4.14) 

Since r~>2, we have shown that al >0. 
Next we use the Schwartz inequality to get 

(a,,_ i)2= (~, (O.*) .... 2 Q.(Q.,.),~- 1 ~)2 

<~ ( ~ ,  (Q.*)  . . . .  - ( Q x )  . . . .  2 ~ ) ( ~ ,  ( Q , )  . . . .  , Q.,.Q~(Q,.), , , - ,  ~ )  

= a , , _  2{(~, (Q*)"  (Q.,.)" ~)  

+ (~, (Q*) .... ~ [Q.,., Q*](Q,.) .... ~ r 

~< a .... 2 { a,,, + 4o2Na, , ,  _ l } (4.15) 

where the final inequality follows from (4.7). 
Assuming that am_2~O and a .... ivY0 (which is true for m='2),  we 

find from (4.15) that 

a, ,  a , ,  
>1 - 1  _ 4 o 2 N  (4.16) 

a , , _  1 a,,, 2 

The rest of the proof is easy. Assume that, for a fixed m, a,,,  4 : 0  for all 
m ' < m < < . M .  Then by summing up (4.16) and using the bounds (4.14), 
(2.21) and r~<2, we see that 

a ,,, 
- -  >>- a l  - 4 o 2 N ( m  - 2) 
a, ,  i 

>~2(/~oN)2 I1 l + 4 r  216r  2 2(rn-2)]/~2N J 

~>2(/mN)2( 1 l+4r216r 2 ,~rl) 

>~ (/~oN) 2 (4.17) 

and hence a,,, 4= 0. By proceeding inductively, we see that the desired bound 
(4.12) holds for m =  1, 2 ..... M. II 
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5. P R O O F  OF S E C O N D  T H E O R E M  

In the present section we prove Theorem 2.4. Again we fix A and drop 
the subscript A. 

Let us define 

22,,,(m !)2 
b,, := - -  (q~, (Ol~) 2m ~) (5.1) 

(2m)! 

which satisfies the following useful inequalities. 

L e m m a  5.1. We have 

2(oN}2 ~< ~< (/.toN)2 (5.2) 

Proof. By using the Schwartz inequality we get 

(q% (O~,))~.,- ~ 4,)2= (~. (OCt,).,, (O~t)),.- ~ r 

<~ (~, (O~1~)2,,, q~)(q% (OtiS)2 .... 4 q~) (5.3) 

which, with (q% (0~)) z q ' )>0 ,  proves inductively (q% (O~J~) z'' q~)>0 for 
any m. By rearranging (5.3), we get 

(~, (O~ll)2~,,-tl ~ (~, (Olll)2~ .... 21 1 
~)~< "'" ~< ,~)2 ~ (q,, (O~1) 2'' ~ j ) ~  (q% (Ol~) 21"- ,~ q~) (~, (O ~ 

1 
<~ (#oN)2 (5.4) 

where we used (2.17). We also note that the definition (2.2) implies 

(q,, (Ot'~) 2'' q~)~< IIOIt~ll 2 (q~, (O~1) 2~'- ~1 q~)~< (oN) 2 (~, (Or'l) 21 .... ,I ~ )  

(5.5) 
By substituting (5.3) and (5.5) into 

b,,,_l 2m(2m--1)(cb,(OIll)2~'-l}~) 
b~- - (2m) 2 (~, (0~)2, ' ~) (5.6) 

which follows from the definition (5.1), we get (5.2). II 

In the present proof, we bound various quantities in terms of b,,. One 
of the main ingredients in the proof is the following lemma, which allows 
us to approximate expectation values including O + with those including 
the self-adjoint operator O ~1. See Eq. (5.14) for a typical situation to which 
we apply the lemma. 
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Let A be an opera tor  written as A=Z. , .~ ,~ax ,  where [ a , . , o ~ . ~ ] = 0  
for ~ = 1, 2 if y r 5(,., and Ilax II ~< a for any x with an x-independent  finite 
constant  a. The support  set 5(.,. is the same for that of h,.. In the following 
we set O " = O  § or O - ,  depending on t r=  + 1 or - 1 .  

I . e m m a  5.2.  Let K, L be nonnegative integers which satisfy 

48r K +  L 33, ( K +  L) 3 
I~ 2 ~ - -  + 2o21 f l  N2 ~< 1 (5.7) 

We assume that A satisfies 

[C,(O+)K-LA]=0 (5.8) 

where C is the generator  of the U(1) symmetry.  [ F o r  K - L < 0 ,  we set 
(O § ) r - L =  ( O - ) L - K . ]  The relation (5.8) essentially means that A consists 
of ( K -  L)  lowering operators.  Let {ai}i= ,.... K+ c be such that  tri = _ 1 and 
~__+ c tr~ = K -  L. Then for any integer k with 0 ~< k ~< K +  L, we have 

22J(J!(2J)! )-" ( ~ '  (O"  ~)J {A(O + )IK- z-)} (O,,,)-, ~ )  

~<6(A; K, L)  (5.9) 

where J = min { K, L } and 

k I K+L ((~''(i~, Otr')~4 \i=kIk'I'+ 10a') (~) ~3(~(a~g,z) (5.10) 
Here 6(A ; K, L) is given by 

6( A ; K, L)  := �89 IK- ~-t b s (5.11 ) 

for general A. For  A = 1, in which case only K =  L is allowed, we can set 

6(I ;  K, K ) =  1 5bK (5.12) 

The iemma will be proved after complet ing the proof  of the main theorem. 
We again want  to control  the quanti ty zl ~M~ in (4.1). By using the 

relation U O ' U  - ~ =  - 0 - "  [which follows from (2.23)], we find that zl ~M~ 
can be written in terms of a double c o m m u t a t o r  as follows [this is reminis- 
cent of the similar representation (2.11) used in the proof  of the simplest 
"low-lying states" theorem of Section 2.2]: 
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2N II ~ ( M ) I I 2  A(M) 

= 2(~ ,  ( O - ) u  H(O + )M r  _ 2E(O, (O- )M (O + )M ~) 

=(r (o -  )M H(o+ )M q~) + (~, (o+ )M H(o- )M q~) 

- (0 ,  ( 0  - )M ( 0  + )M H r  - -  (O, H(O + )at ( 0  - )M O) 

= ( o ,  [(o-) M, [/4, ( o+ )M]]  r  

M - - I  

=E 
m = O  

M - I  

= E  
m =  1 

(r [ ( o - )  M, ( o + )  m [H, 0 + ] ( 0 + )  M . . . . .  '] r  

M - I  m - I  

E ~ (r  ( o -  I' ( o  § }" 
I = 0  , ' 1 =0  

x [ 0 - ,  0 + ] ( 0  § . . . . . .  ' [ n ,  O§ ] (0+)  ~ . . . . .  ' ( 0 -  U - ' - '  r  
M - - I  M - I  

+ ~ ~ ( ~ , ( o - } ' ( o  +)-, 
m~O / = 0  

x [ 0 - ,  [ n ,  0 + ] ] ( 0 + )  M. . . . . .  ' ( 0 - )  M - t - '  ~5) 
M - - 2  M - - I  M - - m - 2  

+ ~ ~ E ( r  +)'' 
.i=0 / = 0  n = O  

x [H, 0 + ] ( 0 + )  o [ 0 - ,  0 + ] 

x (O+)  M . . . . . .  2 ( o - ) M - I - ,  ,~) (5.13) 

Note that the symmetry (vi), along with the relation U C U - t =  - C  [which 
follows from (2.14) and (2.23)], implies that C~---0.  By also using the rela- 
tion [ O - , O + ] = - 2 7 C  and the fact that O :~ are the raising and the 
lowering operators, we can bound the above quantity as 

M -  t M -  1 m -  I 

<~E E E2~ M 
m = l  / ~ 0  n=O 

x I(0, ( o - ) ' ( o  +) .... ' [n ,  0 + 3 ( 0 + )  ~ t - " - '  ( 0 - )  M - t - '  0)1 
M - - I  M ~ I  

+ Y~ Y~ I ( ~ , ( o - ) ' ( o + )  " 
m : O  I = 0  

x [0- ,  [ H , O + ] ] ( O + )  M . . . . .  ' ( 0 - )  M - I - '  ~)] 
M - - 2  M -  1 M - m - 2  

+ E  E y 
m = O  / = 0  n = O  

x 1(r ( o -  Y ( o + )  " [H, O+ ] ( 0 - )  M . . . .  -~ ( 0 - )  M-~-~ o)1 
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<~6yM 4 3([H,  O+];  M - 2 ,  M -  1) 

+ 3 M  2 6 ( [ 0 - ,  [H, O+]] ;  M -  1, M -  1) (5.14) 

where we have used (5.10). The use of Lemma 5.2 is justified since M 
satisfies (2.24), which {with K +  L<~2M) guarantees the condition (5.7). 

By using (5.11) in Lemma 5.2, we get 

12N II ~M~II-" A~Mq 

3 
<~ 3~M4(4rbhN)(2oN) bM_-, +-~ M-'(16r2o"hN) bM_ t 

{24~ rh M4 24r _~2) .-- (5.15) 

where we have used the bound (5.2) in Lemma5.1 to relate bM with 
different M. 

On the other hand, from (5.9) and (5.12), we find 

II ~'IM)II-' = ( r  (O - )M (O § )M ,p)/> �89 (5.16) 

By combining (5.15) and (5.16) and substituting the assumed bound 
(2.24), we finally get 

.-:75--,24~h (1 + )-----~' M2~(~M'~ " I/I'M~I 
<~ t~ o21fir N J \ N ]  

~<c3 (5.17) 

with c3 = 24r:h~ - 2( 1 + yo - "-~ - "-r- ~c2). 
It remains to prove Lemma 5.2. We prepare the following. 

k e m m a  5.3. Let K, L be nonnegative integers which satisfy (5.7). 
We assume that the operator A satisfies the conditions of Lemma 5.2. 
Let {ai}`.=.....,K+L, {r`.}`.f~,....x+L be such that a, .=__l,  r`.=__l, and 
]~__+l L a`. = Z~__+~ L r`. = K -  L. Then for any integers k, / with 0 ~< k, l ~< 
K + L, we have 

c ' 

<~ 6(A ; K, L)  

with the same 6(A; K, L)  as in (5.11) and (5.12). 

K + L Oril A i=/['I+l ~) 
(5.18) 
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Proof  o f  L e m m a  5.2 Given L e m m a  5.3. Let B be an arbitrary 
operator which satisfies I-B, C] = 0. Then 

((2B, ( O ( 1 ) )  s B(O(I))  J (7I)) 

: (o (o+ +~ o/~ ,(o+ + o )~ o) 

)) 
lrl ~ -I- I ~2J= _+ 1 i i l 

((~0,)(~ )) = ~ 2 - z j  r 0 ~' B 0 "  �9 (5.19) .= { r i } ; ~  lri=O 1 J + l  

where the final sum is over all z ;= +_1 with 2s Ze= 1 ~,'= 0. The constraint 
comes from the fact that r is an eigenstate of the U(1) generator C. Since 
the number of distinct combinations {z~} which satisfy the constraint is 
equal to ( i f )=  (2J)!/(J!)  2, we can rewrite (5.19) as 

J 2J 

2zs(j!)2 
- -  ( ~ ,  ( O(t)) s B( O(1)) J ~ ) (5.20) 

(2J)~ 

To prove (5.9), we set B = A ( O + )  x-t"  and substitute (5.20) into the 
left-hand side of (5.9) to get 

(~,(iOlOai) A (,~,i = k~+K+L 10ai)~) 

2 zs(J!)-------z(2J)! (r (o(t~)~ A (O + )~-  L (O(t))s r 

J 

{~i}: Y_ T~= o 

= 6(A; K, L)  (5.21) 

where we have used (5.18). 
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To prove (5.10), we simply substitute the estimate 

2zs(J!) 2 )x-  z. (O.~)s 
~ ( ~ , ,  (o"')- '  A(o + ,t) 

~< IIA(O+)K-LI[ 22J(J!)2 (q', (O"~)2J'/')~< 26(A ; K, L) 
(2J)~ 

(5.22) 

which follows from the definition of norm (2.2), into the bound (5.9). 1 

Proof of  Lemma 5.3. The desired bound (5.18) is trivial if K =  L = 0. 
We shall prove the bound inductively in K +  L. 

Fix K, L with K~> L (the bounds for K <  L follow from the symmetry), 
and assume (5.18) for any nonnegative integers K', L' with K ' + L ' <  
K +  L. Note that we are also allowed to use the resulting bounds (5.9) and 
(5.10) for the same K', L'. 

We first assume A 4: 1. We denote by D the left-hand side of (5.18), 
and bound it as 

o.)o)1 
+ 

=: D~ + Dz +D3  (5.23) 

The quantity DI in (5.23) can be bounded as 

(5.24) 

Each term in the sum of (5.24) can be bounded by using (5.10), where we 
identify I-O • A] as the operator A in (5.10). The condition (5.8) is clearly 
satisfied if we properly replace K - L  by K-L-T-1 .  To apply (5.10), we 
rewrite the operator as [O • A] = ~ . ~ A  [Z.,~s,,~ o f ,  ax] and note that 
I I [Z~  ~, o f ,  a~]ll <~4rao. When a i =  + 1, we get 
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( +Loo) o) 
<~ 36([O+, A]; K - 1 ,  L) 

J3(4raoN)(2oN) je-L-I  b ,  if K>  L 

<" [i(4raoN)(2oN) bL_l if K =  L 

<~ 3(4raoN)(2oN)r-L + 1 bL-1 (5.25) 

for K>_, L, where we used the bound (5.2) in the case K >  L. 
When rrj = - I ,  we also get 

"-- ( K+L 

~<36([O-,  A] ;K ,  L -  I) 

<~ 3(4raoN)(2oN)K- c+ 1 bL_ ~ (5.26) 

Since there are at most ( K +  L) terms in the sum in (5.24), we find that 

D 1 <~ (K+ L) 3(4raoN)(2oN)r- t+ 1 b t _ ,  (5.27) 

It is obvious that the quantity D 3 satisfies the same bound as (5.27). 
To evaluate the quantity D2 in (5.23), we transform {ffi}i=t.....K+L 

into {rj}i= t..., K+ L by successively exchanging neighboring indices. We then 
get 

z~2.< E ~, A 0 ~' Eo ~', 0 ~>'] [ I-I 0 K' �9 (5.28) 
{g ,}  \ i =  1 i=j+ 2 

where { xi}i= ~..... t~+ L is summed over the sequence of configurations which 
interpolates between {a,},= L... K+ c and {r,},=~,....K+ L, and j (which 
depends on {x~}i= 1..... ~+ L) indicates where the indices are exchanged. 

By using the commutation relation (2.23) and Cq~=0, we can further 
bound D= as 

< - < E  2~(K+L) ~ ,A O~'){ FI o ~' 
{~:,} \ i =  1 I \ i = j + 2  

~< ~ 6 y ( K + L )  6 ( A ; K - 1 ,  L - 1 )  

<~ 3~KL(K+ L)(aN)(2oN) r -  L bL_, (5.29) 

where we have used the fact that at most KL exchanges are necessary to 
get {r}~=l.....~+t from {a,}~=l,...,g+t and the bound (5.10). 
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By substituting the bounds (5.27) and (5.29) into the decomposition 
(5.23) and using the bounds (5.2) and (5.11), we finally get 

D ~< {24(K+ L) ro2N+ 3~KL(K+ L)}(aN)(2oN) K- L bL_ 

< ~48rK+L 6? K L ( K + L ) ~ 6 ( A ; K , L  ) 
//2 T "[ 02]./2 ~ "  3 

<~ 6(A ; K, L) (5.30) 

where we used the assumption (5.7) and KL <~ (K+ L)2/4. This proves the 
desired (5.18) for A ~ 1. 

The case A = 1 is much easier. One notes that only D2 is nonvanishing 
in the decomposition (5.23). A similar estimate as the above proves the 
desired result. | 

APPENDIX A: G R O U N D  STATES OF INFINITE SYSTEMS 

In the present appendix we give mathematically precise definitions of 
ground states in an infinite system and discuss relations between different 
definitions. The contents of the present appendix might be well known to 
experts, but they have not been written down explicitly as far as we know. 
We think it would be convenient for the reader to have them included in 
the present paper. 

We start by briefly reviewing basic setups in the operator-algebraic 
approach to quantum systems with infinitely many degrees of 
freedom. ~9'43"45~ For simplicity we consider a quantum many-body system 
defined on the d-dimensional hypercubic lattice Z d. With each site x e  Z d 
we associate a finite-dimensional Hilbert space ~'ff~ which is assumed to be 
identical to ~o, where o is a fixed site (the origin) of Z d. The Hilbert space 
corresponding to a finite subset I2 c Z d is 

~ : =  | ~ (A.I) 
x~.r 

Let dQ denote the set of all the operators on Jf~. The basic object in the 
operator-algebraic approach is the algebra of quasilocal operators defined 
as 

d:=U~/a (A.2) 
a 

where the union is over all the finite subsets 12 c Z a and the completion is 
taken with respect to the norm (2.2) for local operators. Note that we have 
made ~r into a Banach space. 
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A state p( -.. ) is a linear map from ~r to C which satisfies p ( 1 ) =  1 
and p(A*A)>~O for any A ~ r  It can be shown (9) that it automatically 
holds that Ip(Z)l ~< IIAII and p(A*)=p(A)*. We denote by ~ the set of all 
states on ~r Since g is the intersection of the unit sphere of the dual space 
~r and the cone of positive functionals, the Banach-Alaoglu theorem c42) 
implies that g' is compact  in the weak- ,  topology. 

The compactness provides us with a useful way of constructing states 
on ~r Let {~r 2,... be an arbitrary sequence of finite subsets of Z d 
which tends to Z d in the sense of van Hove ~47"431 as i T o0. For  each i we 
take a state (density matrix) p~( ..- ) on the algebra ~a,- Since p~(-- - )  can 
be naturally regarded ~5 as an element of g,  the compactness ensures that 
one can take a subsequence {i(j)}/= L2....= {1, 2,...} such that the weak- ,  
limit 

p ( . . -  ) :=  lim P~Ij)( "'" ) (A.3) 
JT~ 

exists. In the physicists' language, (A.3) should be read 

p(A ) = lim p~/l(A) (A.4) 
JT~- 

for each A e d .  
As in Section 2, we let h0 be the local Hamiltonian at the origin o ~ Z d, 

which acts on the finite-dimensional Hilbert space | with the 
support  set Sao containing r sites. We also set hx=z.,.(ho) and for any finite 
set t 2 ~ Z  d, 

Ha := ~ hx (A.5) 
vE.Q 

where z,. denotes the translation by the lattice vector x. 
We now describe three different definitions of the set of  ground states, 

The first definition is standard in mathematical literature, and is 

~l := {co ~ d'l r * [H~ ,  A ] ) >/0 for any A ~ ~r and for any finite O c Z d } 

(A.6) 

Here we introduced 

(A.7) 

15For Ae~/u, and BE.~o,~ (where I2/=Za\12i), we set ~I(AB)=p~(A)o~(B), where 
ai(-..) is an arbitrary state on Mo,'. By using linearlity, ~( . - . )  extends over the 
whole d .  The state try(...) may be chosen, for example, as the trace state defined 
by ai(--. )=limrrofTr~,r[---]/Tr~,r[1 ]. This choice corresponds to the so-called free 
boundary conditions. 
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where ~ = zx(6eo) is the support set for hx. (We use the same symbol L,- to 
denote the translation operators for subsets of Z a and that for operators.) 

The second definition is due to Aizenman and Lieb (5) (see also ref. 4). 
The definition is useful because of its similarity to "classical" definitions of 
ground states. It is 

aJ2 := {co ~ ~lco(Ho) <~co(T(Ho)) for any T ~ a  and for any finite s  Z d } 

(A.8) 

where ~a is the set of all local perturbations on/2.  A local perturbation T 
on 12 is a linear mapping T: d ~ d which satisfies T(A) >. 0 for any A/> 0, 
and T(A) =A for any A ~dac, where dac := (Ja' da.\~ is the operator out- 
side of 12. 

The third definition already appeared in Sections 1.2 and 2.5, and is 
probably the simplest among the three definitions. (Essentially the same 
definition can be found in ref. 2.) It is 

<B 3 := {co e ~'lco(h.,.)= % for a n y x ~ Z  d } (A.9) 

where the ground-state energy density eo is defined as follows. Let A be the 
d-dimensional L • .-- x L hypercubic lattice. We define the corresponding 
Hamiltonian with periodic boundary conditions as 

n p.b.c.  _ A - Y, hx ( A A 0 )  
x E A  

where for a site x close to the boundary of A we identify h.,. in (A.10) as 
an operator in dA by imposing periodic boundary conditions. Note that in 
the present paper a Hamiltonian with periodic boundary conditions is 
simply denoted as H A except in the present appendix. Then we define % by 

Co := lim inf Ip,~(HAP'b'c" ) (A, I I )  
A I Z  a p , , 6 s . ' . ~  IAI 

where IAI is the number of sites in A and the existence of the limit can be 
proved by a standard argument. 

For each i = 1, 2, 3, we denote by ~ the set of co ~ ~. which is transla- 
tion invariant, i.e., co(r.,.(A ) )=  co(A) for any A e d and any x ~ Z a. 

Now we discuss the relations between these different definitions. We 
first note the following. 

Proposition A.1. We have ~] =~J2. 

Outline of Proof. Nontrivial parts of the proof are worked out in the 
literature, and we only have to make some formal observations. We make 
use of the results summarized as Theorem 6.2.52 in ref. 9. 
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To prove fg~ c f92, we note that  the above-ment ioned theorem in ref. 9 
says that co e (9~ if and only if 

co(Ha) <~ co'(Ha) (A.12) 

for any c o ' ~ #  such that co(B)=co ' (B)  for all B e d a r  and for any finite 
t -JEZ a. By choosing the perturbed state c o ' ( . . . )  in a special form 
co(T( . . .  )) as in the definition of (#2, we see that co ~ (#2. 

To  prove f#2 c (~, we clan follow the part  (1)=>(2)  of the proof  of the 
above-ment ioned theorem in ref. 9 without any essential modifications. I 

Next we note the following. 

Proposi t ion  A.2.  We have fq~ = ~2 sD (~3. 

Proof.  Because of Proposi t ion A.1, it suffices to show (r ~ (#2. The 
proof  is elementary. 

We want to get a contradict ion out of the assumpt ion that  there is a 
state co such that  co ~ f~3 and co r (#2. F rom the assumption,  there exists a 
finite set [2 c Z a, a local per turbat ion T ~ ' a ,  and a constant  e > 0 such 
that 

co(Ha) - co (T(Ha) )  >. e (A.13) 

Let 1 be an integer such that t~ is contained in a suitable d-dimensional 
l x  . . .  x l  hypercubic lattice Ao. For  an integer n, let A be the d-dimen- 
sional (nl) x . . .  x (nl) hypercubic lattice. There are translation operators  ri 
with i =  l, 2,..., n d such that 

t l  d 

A = U z,(Ao) (A.14) 
i = l  

Let coA be the state obtained by simply restricting co onto dA. We further 
define 

for a suitable A ~ ~,~, where 

co~(A) := m,~(T(A)) (A.15) 

n d 

T- -  U T~-' Tz, (A.16) 
i = l  

By using (A.13) and the properties of local perturbations,  we observe that 

t l  d 

CoA(H~bc)--Co~(H~b'r  ~ {coA(H~,(a))--coA(T(n~la~))}>~nae (A.17) 
i = l  
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On the other hand, since we have co(hx)= Co, we get 

r ,I(H p.b.c.) ~< (rtl)d EO + f l ( n l ) a -  t (A.18) 

where fl is a finite constant which takes care of the boundary effects. By 
combining the bounds (A.17) and (A.18), we get 

( n l ) - d  CO,A( H ~.b.c. ) _ eo <~ _ i - d e  + f l ( n l ) -  1 (A.19) 

which contradicts the definition (A.l l )  of Go by taking n sufficiently 
large, l '  

It should be noted that we do not have c~ 1 = ~2 = (#3- For example, a 
state with a single domain wall in the Ising model belongs to cBl = f#2 but 
not to cB 3. It is a delicate problem to decide which definition is more 
"realistic." 

As for the translation-invariant ground states, however, we have the 
following rather satisfactory result. 

P r o p o s i t i o n  A .3 .  We have ~ = c#2.= c# 3. 

Proof. Because of Propositions A.I and A.2, it suffices to show that 
~ c ~ .  Again the most essential part can be found in the literature. In 
Theorem 6.2.58 of ref. 9 it is proved that a translation-invariant state co 
belongs to (g~ if and only if oJ(hx)= e'o for any x ~ Z d. The ground-state 
energy density is defined as 

go := inf oJ'(hx) (A.20) 
to' E ~inv 

where ~inv is the set of translation-invariant states in g. We only have to 
show that Go = ~o, and this may be done in several ways. Here we offer 
a simple constructive proof. For each A, we can take a ground state 
�9 ~ )e  ~ of the Hamiltonian - -  P'b'c', whose expectation values are invariant 
under translations that take into account the periodic boundary conditions 
imposed on A. Define a state o9e8  by the (weak-,)  limiting procedure 
(2.36). By construction, we see that 09 e c~. The above-mentioned theorem 
of ref. 9 then implies that og(hx)= go. On the other hand, our definition 
(A.11 ) of Go implies that og(h.,.) = Go. l 

One might be interested to know if there is any general theorem which 
tells us exactly what are the elements of the above sets of ground states. 
The following is an example of such general theorems. It establishes 
uniqueness of the ground state when there is a decoupled Hamiltonian with 
a unique ground state, and then one adds a weak (but completely 
arbitrary) translation-invariant perturbation to the model. 
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Suppose that the Hamiltonian at the origin can be written as 

ho=vo+6Po (A.21) 

The main part  Vo acts only on the space ~o and its lowest eigenvalue is simple. 
The perturbation po is an arbitrary self-adjoint operator  on | , ~ o  ,Jcgx and 
6 is a constant. By using a rigorous perturbation technique, the following 
was proved in ref. 23. 

T h e o r e m  A.4.  There exists a finite constant 60 > 0  which depends 
on the dimension d and on the operators Vo and Po. For  161 ~< 60, the set 
of  ground states f~l = c~2 = (~3 consists of a unique element. 

For  example, the Ising model under sufficiently large transverse 
magnetic field (1.1) is covered by the above theorem by setting ho= S~o ~. 

A P P E N D I X  B. E R G O D I C  I N F I N I T E - V O L U M E  G R O U N D  STATE 
IN SYSTEMS WITH DISCRETE SYMMETRY 
B R E A K I N G  

In the present appendix we concentrate on a system in which a dis- 
crete symmetry is spontaneously broken. We assume for each finite system 
the existence of an "obscured symmetry breaking" and the existence of an 
energy gap above the first "low-lying eigenstate." Then we can prove that, 
by forming a linear combinat ion of the (finite-volume) ground state and 
the "low-lying state" and then taking an infinite-volume limit, one indeed 
gets an ergodic infinite-volume ground state. 

As far as we know, this is the first rigorous and general result which 
explicitly tells one how to construct an ergodic infinite-volume ground state 
when there is a symmetry breaking. The theorem is desirable in this sense, 
but we have to note that the assumption on the existence of a gap is a 
rather strong one, which is not at all easy to verify even in relatively simple 
problems. ~6 We also stress that the techniques involved here crucially 
depend on the fact that there is only one "low-lying eigenstate." To prove 
the corresponding conjecture (stated in Section 2.5) for the models with 
broken continuous symmetry seems formidably difficult at present. 

We study the situation basically identical to that in Section 2.2, but 
with additional assumptions on the translation invariance. The translation 
invariance is by no means essential in proving the main theorem, but the 

~6 Even in models (like the transverse Ising model of Section 1.2) where one has a convergent 
cluster expansion, it may not be easy to verify the existence of the gap. As for the transverse 
Ising model in one dimension, one can make use of the mapping to the free fermion 
problem to control the gap. 
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implication of the theorem is interesting only in translation-invariant 
systems. 

Let A be a d-dimensional hypercubic lattice with periodic boundary 
conditions and denote by N the number of sites in A. We consider a quan- 
tum many-body system on A as in Sections 2.1 and 2.2. The Hilbert space 
is constructed as in (2.1), the Hamiltonian as in (2.3), and the order 
operator as in (2.5). The additional assumptions are that we have 
h,-= r,.(ho) and o,. = zx(oo), where r,. is the translation operator that takes 
into account the periodic boundary conditions. We also require that each 
ox acts only on the local Hilbert space ~.,.. In some situations, one might 
need to redefine the notion of "sites" to satisfy the translation invariance. 
See Section 3.2. 

Let EtA ~ E~ ~' with E~A~ E~ 1' be the two lowest eigenvalues of HA, 
and qS~A01, r ~1 be the corresponding normalized eigenstates. We assume 
that if E~ is any other eigenvalue of HA, we have 

E'A-- E~">~ EG (B.I) 

with a (A-independent) constant EG > 0. We also assume that the ground 
state q)lo) exhibits an "obscured symmetry breaking" as A 

(q)~A ~ OA ~ 0 ' )  = 0 (B.2) 

(q)~Ao~, (OA)Z q~l )  >~ (~oN)2 (B.3) 

with a constant ~ > 0 and 

(r ~ (OA) 3 q)~O') = 0 (B.4) 

Although we did not assume the condition (B.4) in Section 1.2, it is valid 
in most situations. 

We shall again consider the "low-lying state" of Horsch and v o n d e r  
Linden, i t 5 

~A := (B.5) 
IIOA r176 

and its linear combination with the ground state 

1 
--" := ( q s ~ +  ~uA) (B.6) -A v~ 

which was first considered by Kaplan et aL ~Is~ From a straightforward 
calculation using the definitions (B.5), (B.6), and the assumed (B.2), (B.3), 
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and (B.4), we find (18) that the above state (B.6) exhibits a symmetry 
breaking as 

1 t 2 { ~  ~ (oA); ~o}} 
{~A, o.,.~.,) = ~ ~{@[~ o~ r + IIO~ ~~ 

L o 
+ i10~)112 J 

= [(~o), (OA)2 q~o})],/2>.l~O N (B.7) 

Let A be a local self-adjoint operator which acts on Q.,.~.,/.. ~,., where 
the number of sites in the support set J '  is bounded by a constant r'. For 
a subset s ~ A, we set 

Aa := Y" t,.(A) (B.8) 
.x '~O 

where r,.(A) is a translate of A by a lattice vector x. Then the main result 
of the present appendix is the following. 

Theorem B.1. We have 

lim lim 1 _ latr~ u r~  I - ~  {(ZA, (Aa) 2 ~A)--(-~A, Aa=A)-} = 0  (B.9) 

for any local operator A. 

From the Definition 2.7 of ergodic state, we get the following interest- 
ing conclusion. 

Corollary B.2. The infinite-volume ground state 

w + ( . . . ) =  lim ( 3 A , ( ' . - ) ~ A )  (B.10)  
N T '~' 

defined by taking a suitable subsequence is an ergodic translation-invariant 
ground state. 

It is obvious that the same is true for the infinite-volume ground state 
co_( . . .  ) constructed from ( ~ o ) _  ~A)/x/r~ instead of (B.6). 

In the following we prove Theorem B.I. For simplicity, we drop the 
subscript A from ~ 1 ,  cb~}, 7jA, HA , OA, etc. 

We start from the following lemma, which provides us with the basic 
tool in the proof. In short the lemma says that the set of two states 
{q~to), ~{))} can be used almost as a "complete basis" in some situations. 
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Lemma B.3. Let B and C be arbitrary self-adjoint operators. Then 
for i, j =  0 or 1, we have 

(~lil, BC~(jI )_  ~ (r B~k~)(~k~, Cclj~J~) 
k=0.1 

= I(~ li~, B~C~CJl)I 

~< ([l[B, I n ,  B]]II" lIFE, [H, C]]II) ~/2 
2EG (B.11 ) 

where 3 ~ is the projection operator onto the space orthogonal to both q~r 
and ~(*~. 

ProoL From the existence of a gap as in (B.1), we get the operator 
inequality 3 ~ <~ ( H - E i ) / E ~  for i =  0, 1. By using the Schwartz inequality, 
we have 

I(Clb(i), B6PC~(i~)[ 2 

~< (~i),  B3~Bqbti))(~ci), C~C~(j)) 

~< (qbr B H - E ~  . . H - E ~  ccls,j, ) 

= (2Ec)-2 (~.~, [B, [H, B]]  ~"l)(q ~c/I, [C, [H, C ] ] ~  ~jl) 

~< (2EG) -2 liE& [H, B]]II. ll[C, [H, C]]I[ (B.12) 

which is the desired bound. I 

As the first application of the lemma, we state the following result, 
which is both useful and important. The lemma says that the "low-lying 
state" (B.5) is indeed a very good approximation of the first excited 
state ~(1). 

Lamina  B.4. One can redefine the (quantum mechanical) phase of 
the first excited state ~c1~ so that the bound 

4hr 2 1 
[1r ~** - ~Vll 2 ~< - -  (B.13) 

EG/~ 2 N 

holds. 

ProoL Since (~o~, ~v)=0, we can write ~v=c<#5~*~+ ~ ' ,  where 
~v, = # ~ .  By redefining the phase of ~(*~, we can choose c~/>0. First note 
that 

I1r ' ~ -  ~ell ~= I1(1 -c<)~ I*>- ~V'll 2 

= (1 - c<): + II ~"112 ~< 2 II ~e'll 2 (8.14) 

822/76/3-4-4 
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where we have used (1 _ ~ ) 2 <  1 - c~<  1 _ ~ 2 =  l[~,l[2. To bound II~'ll, we 
use (B.11) to get 

(@(o), O~O~(O)) 
I I ~ e ' l l ' = ( ~ , ~ )  - (~(o), O2~(o)) 

I[ l O i n ,  O]]I[ 
~< 2Em(~(o), O2~ ~~ 

4o2r2N  2hr  2 1 

<~ 2 E G ( o l I N )  2 - EGt~ 2 N (B.15) 

where we used (B.3). | 

We now turn to the estimate of the left-hand side of (B.9). Note that 
we can assume 

(@(ol, A a ~ ( o l ) = 0  (B.16) 

since otherwise we can redefine A - (r Ar as a new A. Let 

1 (~(ol 
9 '  : = - -  + @())) (B.17) 

which is essentially the same as _E according to the definition (B.6) and the 
relation (B.13). In particular, we have 

I{(- =, (A~) 2 9)-(-=, A~) 2 } - {(.~', (Ao) 2 --')- (.~', Aa3')2}I 

~<al IIAII z it2l 2 (B.18) 

Throughout the present proof, a,- denote constants which depend only on 
,~, r, ~, and Eo. By using the definition (B.17) and the requirement (B.16), 
we observe that 

(2', (Aa) 2 ..--')- (~', Ao_=') 2 

= �89 {(@(o), (A~)2 ~(o)) + (~(o), (A~)2 r + (~(1), (Ao)2 (~(o)) 

=I-((~ ()), (Ao)2 (~)(I))} 

_ �88 {(~(o). A ~ . ) ) +  (~(~), Aa~(o))+ (@(,). A0r 

= �89 {(@(0), (Aa)2 @(0))_ (@(0), Aa@(~))(r A~@(o))} 

+ �89 { (@(0), (A~)2 (~()))_ (r Ao@()))(r Aa@(~))} 

+ .~ {(@(,), (Ao)~ @(o)) _ (@(,), An@(,))(@(,), A~ @(o))} + R 

(B.19) 
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The remaining term R can be further rewritten as 

R = �89162 (Aa)2  ~ ( 1 ) ) _  �88 {(r A o ~ ( , I ) 2  

+ ((:Jb (I), A 0 (jib(~ + (qB (1), Ao qO(1))2 } 

'{ } = 5  ( ~ ) , ( A ~ ) 2 ~ ) )  - }-'. (~c~,A~C~))(~l~,A~ ~c~) 
i = O , I  

+ �88 {(r A~ r162 A ~ r  (r A~(o))-~ } 

+ �88 {(O ~ ,  A~ r176 ~ A~r l~ ) _ ( r  A~ r  q ~ } 

+ �88 Aa(1)(~)) ' (B.20) 

By using the "completeness" relations (B.11) and (B.16) to bound the right- 
hand sides of (B.19) and (B.20), we have 

I(.~', (A~) 2 -=') - (~.', Ae~')2I  

1 ~(o))(r ,~(,)) _ A a (:i)(o))" l ~<,~ I(~ (I), A~ A~ (@(~), 

I I 
+-~(@('),Ao@('))E+-~GII[Ao, [H, Ao]] l l  (B.21) 

We shall bound each term in the right-hand side of (B.21). To bound 
the first term, we use (B.13) to get 

l (,~(~), Ao ~(~ (~ A a ~  (t)) -- (,~(~), Aa qO(~ l 

<~ IIAa II I(~ (~ A ~ ( ~ ) )  - (~(~), Aa~(~ 

+ IIh,~ (~(0), (AO - OA)~ i~ a 2 II t ~< Ilhall 
J 

IIA~ll'lll-Zo, O]ll a211A~li 2 ~< (@(o), o~(O)),/2 F 

2 IIAII2 r ' If2[ 2 a 2 IIAII 2 It212 
<~ + (B.22) 

where we have used the lower bound (B.3) and the bound II[Aa, O]11 
2 IIA II or' It21. 

To bound the second term, we first use (B.13) and (B.3) to get 

_ ((~(0), OAc~O~(O)) a3 IIAoll 

(@(o), OAoO@(O))_l_a3 IIAII" It21 
~< (B.23) 

(/~oN) 2 N//N 
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To bound the right-hand side of (B.23), we use the "completeness" 
relations (B.11) and (B.16) to get 

I(~ (~ OAaO~(~ 

~< l(~ (~ O2AQ ~(~ + l(~ (~ O[AD, O] ~(~ 

~< I(~ (~ O2~<'))(~ ('), Ao ~(~ 

(ll[O 2, [H, 023311 �9 IlEAl, [H, Ao]]II) '/2 
+ + IIO[A,~, O]11 

2Eo 

~< I(~ I~ OZcb (LI) IIA~ II I 

( 16o4h ZrN 3 x 4 II A II 2 hrr'2 IOI )'/2 
+ + IIZ 11 o2r' Inl N (B.24) 

2Ec 

We further use (B.13) to see 

l(@(o), 02~,))1 ~< I(@(% O20~(~ a2/lO2]l + - -  
(~(o), O2~(o)),/2 

<<, o2a2 N 3/2 (B.25) 

where we used (B.4). By substituting (B.24) and (B.25) into (B.23), we get 

{t212 
(~(,), Aa q~(, ))2 ~< c - -  (B.26) 

N 

where c is an N-independent constant. 
In order to control the third term on the right-hand side of (B.21), we 

note that II[A,~, [H, Aa]]tl <~4.llAllahrr '2 It21. By putting (B.18), (B.21), 
(B.22), and (B.26) together, we finally see that 

1 1Oi2 ](3,, (Aa)2,E)-(Z,,Aa3)21 ~<4 IIAll2 hrr '2 1 +O(N_l /2  ) 
EG Is~l 

(B.27) 

A P P E N D I X  C. LOWER B O U N D  FOR F L U C T U A T I O N  OF 
BULK Q U A N T I T I E S  

In the present appendix we prove simple lemmas which characterize 
the behavior of the fluctuation of bulk quantities in a translation-invariant 
state. The lemma was used in Sections 1.2 and 2.5 to demonstrate that the 
infinite-volume ground state obtained as a limit of finite-volume ground 
states is not ergodic. 
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Let A be a d-dimensional hypercubic lattice with N sites and with peri- 
odic boundary conditions. We consider a quantum many-body system on 
A with the Hilbert space (2.1). We do not make any specific assumption 
about the system. We denote by ~, the translation which acts on the 
operators and which respects the periodic boundary conditions. 

Let B be an arbitrary local operator. For a subset f2 = A, we set 

B4 := Z ~x(B) (El)  
XE.O 

l . e mm a  CA. l~et ~a  be an arbitrary state which defines a transla- 
tion-invariant expectation values, i.e., (~A, ~x(A)~A)= (~a ,  Aq~,) for any 
local operator A. Then for any local operator B, we have 

1 l 
l~gl ~ (~  a, B3 Ba ~ a ) >~ ~ (~  a, B~ Ba ~,~ ) (C.2) 

Although we only apply the inequality to ground states in the present 
paper, we note that it has a trivial extension to finite-temperature Gibbs 
states as follows. We note that the following result has been (implicitly) 
quoted in the introduction of our previous publication, ~26~ when we 
mentioned that the naive infinite-volume limit of the Gibbs states without 
symmetry breaking is not ergodic. 

k e m m a  C.2. Let Ha be a translation-invariant Hamiltonian. Then 
for any local operator B, we have 

1 
Z(fl) - t  Tr(B*Bae -tin') >~N----IZ(fl) - 1 T r ( B * B a e  -tm~') (C.3) 

It21-' 

where the partition function is Z( f l )=  T r [ e x p ( - f l H a ) ] .  

We now prove Lemma C.1. Let ~s be the projection operator onto the 
state BA~a/IIBa~a II. If the state is vanishing, we set ~ s = 0 .  Since 1 - ~ s  
is nonnegative, we see that 

IQI 2 
- N 2 (~A, B*Ba~A) 

(cIgA, B*BA~A)(~A,  * BaBa~A)  

(qbA, B*Ba~a)  

(C.4) 

where we used the translation invariance and the periodic boundary condi- 
tions to get the final line. If ~B = 0, the inequality is trivial since the final 
expression is vanishing. This proves the lemma. 



802 Koma and Tasaki 

In order to prove Lemma C.2, we let {~t"~} be a complete basis where 
each basis state q~c,~ is an eigenstate of H A with the eigenvalue E, and also 
defines translation-invariant expectation values. By using the bound (C.2), 
we get 

Z(fl) -~ Tr(B* Bae -pHA) = Z( f l ) - '  ~ (cI) ~"1, B* BocI)~"~)e-Pe" 
t l  

It212 
>~-~-T Z( fl)- ' ~ ( ch("), B* B AcI)I"')e-tJE. 

n 

I012 - N2 Z(~) - l  Tr(B*B~e -an") (C.5) 

ACKNOWLEDGMENTS 

The present work has been under preparation for nearly 2 years. We 
wish to thank Ian Attleck, Tom Kennedy, Kenn Kubo, Elliott Lieb, Seiji 
Miyashita, Tsutomu Momoi, Bruno Nachtergaele, Hidetoshi Nishimori, 
and Ken'ichi Takano for useful discussions on various related topics. We 
also thank Tom Kennedy and Bruno Nachtergaele for valuable comments 
on the manuscript. 

REFERENCES 

1. I. Affleck, J. Phys. Condens. Matter 1:3047 (1989). 
2. I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett. 59:799 (1987); 

Commun. Math. Phys. 1 ! 5:477 (1988). 
3. I. Aflleck and E. H. Lieb, Lett. Math. Phys. 1Z:57 (1986). 
4. A. Aizenman, E. B. Davies, and E. H. Lieb, Adv. Math. 28:84 (1978). 
5. A. Aizenman and E. H. Lieb, J. Star. Phys. 24:279 (1981). 
6. P. W. Anderson, Phys. Rev. 86:694 (1952). 
7. P. Azaria, B. Delmotte, and D. Mouhanna, Phys. Rev. Lett. 70:16 (1993). 
8. B. Bernu, C. Lhuillier, and L. Pierre, Phys. Rev. Lett. 69:2590 (1992). 
9. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics L 

/ /(Springer,  1979). 
10. F. J. Dyson, E. H. Lieb, and B. Simon, J. Star. Phys. 18:335 (1978). 
11. F. H. L. Essller, V. E. Korepin, and K. Schoutens, Phys. Rev. Lett. 68:2960 (1992); 70:73 

(1993). 
12. M. Fannes, B. Nachtergaele, and R. F. Werner, Europhys. Left. 10:633 (1989); Commun. 

Math. Phys. 144:443 (1992). 
13. M. Hagiwara, K. Katsumata, I. Altleck, B. I. Halperin, and J. P. Renard, Phys. Reo. Lett. 

65:3183 (1990). 
14. F. D. M. Haldane, Phys. Lett. 93A:464 (1983); Phys. Rev. Lett. 50:1153 (1983). 
15. P. Horsch and W. vonde r  Linden, Z. Phys. B 72:181 (1988). 
16. E. Jord,~o Neves and J. Fernando Perez, Phys. Lett. 114A:331 (1986). 



Symmetry Breaking in Quantum Many-Body Systems 803 

17. C. Kaiser and I. Peschel, J. Phys. A 22:4257 (1989). 
18. T. A. Kaplan, P. Horsch, and W. vonder Linden, J. Phys. Soc. Jpn. 11:3894 (1989). 
19. T. A. Kaplan, W. vonder Linden, and P. Horsch, Phys. Rev. B 42:4663 (1990). 
20. T. Kennedy, J. Phys. Condensed Matter 2:5737 (1990). 
21. T. Kennedy, E. H. Lieb, and B. S. Shastry, J. Star. Phys. 53:1019 (1988). 
22. T. Kennedy, E. H. Lieb, and B. S. Shastry, Phys. Retd. Lett. 61:2582 (1988). 
23. T. Kennedy and H. Tasaki, Phys. Rev. B 45:304 (1992); Commun. Math. Phys. 147:431 

(1992). 
24. M. Kikuchi, Y. Okabe, and S. Miyashita, Z Phys. Soc. Jpn. 59:492 (1990). 
25. A. Kli.imper, A. Schadschneider, and J. Zittarz, J. Phys. ,4 24:L995 (1991). 
26. T. Koma and H. Tasaki, Phys. Rev. Left. 70:93 (1993); Commun. Math. Phys. 158:191 

(1993). 
27. K. Kubo, Phys. Rev. Lett. 61:110 (1988). 
28. K. Kubo and T. Kishi, Phys. Rev. Lett. 61:2585 (1988). 
29. P. W. Leung and K. J. Runge, Phys. Rev. B 47:5861 (1993). 
30. E. H. Lieb, Phys. Rev. Lett. 62:1201 (1989). 
31. E. H. Lieb, in Proceedings "Advances in Dynamical Systems and Quantum Physics" Capri, 

May 1993 (World Scientific, to appear), and in Proceedings of  1993 NATO A S W  "The 
Physics and Mathematical Physics of the Hubbard Model" (Plenum, to appear). 

32. E. H. Lieb and D. C. Mattis, J. Math. Phys. 3:749 (1962). 
33. W. Marshall, Proc. R. Soc. Lond. A 232:48 (1955). 
34. T. Matsubara and H. Matsuda, Prog. Theor. Phys. 16:569 (1956). 
35. T. Momoi, J. Star. Phys. 75:707 (1994). 
36. T. Momoi, Preprint. 
37. A. Montorsi, ed., Hubbard ModeI--A Reprint Volume (World Scientific, 1992). 
38. M. den Nijs and K. Rommelse, Phys. Rev. B 40:4709 (1989). 
39. H. Nishimori, K. Kubo, Y. Ozeki, Y. Tomita, and T. Kishi, J. Star. Phys. 55:259 (1989). 
40. H. Nishimori and Y. Ozeki, J. Phys. Soc. Jpn. 58:t027 (1989). 
41. Y. Ozeki, H. Nishimori, and Y. Tomita, J. Phys. Soc. Jpn. 58:82 (1989). 
42. M. Reed and B. Simon, Method of Modern Mathematical Physics 1." Functional Analysis 

(Academic Press, 1972). 
43. D. Ruelle, Statistical Mechanics: Rigorous Results (Benjamin, 1969). 
44. S.-Q. Shen and Z.-M. Qiu, Phys. Rev. Lett. 71:4238 (1993). 
45. B. Simon, Statistical Mechanics of Lattice Gases 1 (Princeton University Press, 1993). 
46. H. Tasaki, Phys. Ret,. Lett. 66:798 (1991). 
47. L. Van Hove, Physica 15:951 (1949). 


